• Title/Summary/Keyword: Nearshore Current

Search Result 67, Processing Time 0.025 seconds

Numerical Simulation on Longshore Current Produced by Random Sea Waves (불규칙파에 의한 연안류의 수치계산)

  • 권정곤
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.3 no.1
    • /
    • pp.54-64
    • /
    • 1991
  • To accurately estimate the rate of sediment transport in shallow water bodies, it is necessary to investigate the irregular waves transformation characteristics and nearshore currents produced by random sea waves. Most of studies on numerical models for nearshore currents are based on the theory of monocromatic waves and thus, very few nearshore models take into account the effect of irregularities in the hight, period and directional spreading of incident waves. The numerical simulation model for nearshore currents used in this paper considers the effect of irregularities of incident waves, based on Individual Wave Analysis. The computational results are compared and shown in a reasionable agreement with the experimental data.

  • PDF

Experimental Study for Beach Process by Construction of Offshore Structure (외해구조물 건설에 따른 해빈 변형에 관한 실험적 연구)

  • 이중우
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.12 no.2
    • /
    • pp.96-106
    • /
    • 2000
  • Though the recent years, large scale structures have been built on offshore for utilization of coastal ocean space as offshore airport and marine terminals. Sometimes, those big scale structures, however, happened to act as significant barriers against waves and severe beach erosion would take place on the coast. The present study deals nearshore topography changes affected by construction of an offshore structure with different distance from the shore. The series of three dimensional movable bed experiments have been examined in detail. Moreover, in order to make clear the relation of nearshore currents and local erosions behind offshore structure, the nearshore currents are calculated by Boussinesq equation model and compared with the same scale condition of the physical model experiments.

  • PDF

2-DH Quadtree based Modelling of Longshore Current (연안류에 대한 2D-H 사면구조에 기초한 수치모델링)

  • 박구용
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.13 no.1
    • /
    • pp.1-8
    • /
    • 2001
  • Wave-induced currents drive nearshore transport processes, and hence an accurate understanding of wave-current interaction is required for proper management of coastal zone. This paper presents details of an adaptive quadtree grid based numerical model of the coupled wave climate and depth-averaged current field. The model accounts for wave breaking, shoaling, refraction, diffraction, wave-current interaction, set-up and set-down, mixing processes, bottom friction effects, and movement of land-water interface at the shoreline. The wave period- and depth-averaged governing equations arc discrctized explicitly by means of an Adarns¬Bashforth second-order finite difference technique on adaptive hierarchical staggered quadtree grids. Results from the numerical model are in reasonable agreement with the laboratory data of longshore current generated by oblique waves on a plane beach (Visser 1980, 1991).

  • PDF

Variation Characteristics of Irregular Wave Fields around 3-Dimensional Low-Crested-Breakwater (3차원 저마루구조물(LCS) 주변에서 불규칙파동장의 변동특성)

  • Lee, Kwang-Ho;Lee, Jun Hyeong;Jung, Uk Jin;Kim, Do-Sam
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.32 no.2
    • /
    • pp.122-134
    • /
    • 2020
  • On the many coasts of South Korea, including the eastern side, it has been recently increasing the coastal disaster such as the severe coastal erosion and road damage swept away by the wave. As one of the alternatives to prevent the coastal disaster, it has been widely studied the coastal disaster reduction method by the Low-Crested Structure (LCS) in the many countries including several European countries. In this study, the olaFLow model is used to simulate the permeable LCS and wave field of the LCS through the three-dimensional irregular waves numerical analysis on the basis of the previous research. From the numerical analysis, it is evaluated the Hrms, nearshore current and time-averaged turbulent kinetic energy. In addition, the pattern of nearshore current and spatial distribution of time-averaged turbulent kinetic energy are compared with the case of submerged breakwater under the irregular wave fields. As one of significant results, it is confirmed that the pattern of nearshore current is different with the case of submerged breakwater.

Remote Sensing of Nearshore Currents using Coastal Optical Imagery (해안 광학영상 자료를 이용한 쇄파지역 연안류 측정기술)

  • Yoo, Jeseon;Kim, Sun-Sin
    • Ocean and Polar Research
    • /
    • v.37 no.1
    • /
    • pp.11-22
    • /
    • 2015
  • In-situ measurements are labor-intensive, time-consuming, and limited in their ability to observe currents with spatial variations in the surf zone. This paper proposes an optical image-based method of measurement of currents in the surf zone. This method measures nearshore currents by tracking in time wave breaking-induced foam patches from sequential images. Foam patches in images tend to be arrayed with irregular pixel intensity values, which are likely to remain consistent for a short period of time. This irregular intensity feature of a foam patch is characterized and represented as a keypoint using an image-based object recognition method, i.e., Scale Invariant Feature Transform (SIFT). The keypoints identified by the SIFT method are traced from time sequential images to produce instantaneous velocity fields. In order to remove erroneous velocities, the instantaneous velocity fields are filtered by binding them within upper and lower limits, and averaging the velocity data in time and space with a certain interval. The measurements that are obtained by this method are comparable to the results estimated by an existing image-based method of observing currents, named the Optical Current Meter (OCM).

A hydrodynamic model of nearshore waves and wave-induced currents

  • Sief, Ahmed Khaled;Kuroiwa, Masamitsu;Abualtayef, Mazen;Mase, Hajime;Matsubara, Yuhei
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.3 no.3
    • /
    • pp.216-224
    • /
    • 2011
  • In This study develops a quasi-three dimensional numerical model of wave driven coastal currents with accounting the effects of the wave-current interaction and the surface rollers. In the wave model, the current effects on wave breaking and energy dissipation are taken into account as well as the wave diffraction effect. The surface roller associated with wave breaking was modeled based on a modification of the equations by Dally and Brown (1995) and Larson and Kraus (2002). Furthermore, the quasi-three dimensional model, which based on Navier-Stokes equations, was modified in association with the surface roller effect, and solved using frictional step method. The model was validated by data sets obtained during experiments on the Large Scale Sediment Transport Facility (LSTF) basin and the Hazaki Oceanographical Research Station (HORS). Then, a model test against detached breakwater was carried out to investigate the performance of the model around coastal structures. Finally, the model was applied to Akasaki port to verify the hydrodynamics around coastal structures. Good agreements between computations and measurements were obtained with regard to the cross-shore variation in waves and currents in nearshore and surf zone.

Analysis of the Hydraulic Behaviour in the Nearshore Zone by a Numerical Model (수치모형에 의한 연안해역 해수운동의 분석)

  • Lee, Hee-Young;Jeoung, Sun-Kil
    • Water for future
    • /
    • v.27 no.2
    • /
    • pp.73-83
    • /
    • 1994
  • The unproper development of the nearshore zone can enhance the diffusion of pollutant in the nearshore zone resulting in unbalanced sediment budget of beach which causes alteration of beach topography. Therefore, it is required to predict the effects of the envirnmental change quantitatively. In this paper, the depth-averaged and time-averaged energy balance equation is selected to acount for the wave transformation such as refraction, shoaling effect, the surf zone energy disipation, wave breaking index and bore, due to wave breaking in the shore region.(Numerical solutions are obtained by a finite difference method, ADI and Upwind. For the calculation of the wave-induced current, the unsteady nonlinear depth-averaged and time-averaged governing equation is derived based on the continuity and momentum equation for imcompressible fluid.) Numerical solutions are obtained by finite difference method considering influences of factors such as lateral mixing coefficient, bed shear stress, wave direction angle, wave steepness, wave period and bottom slope. The model is applied to the computation of wave transformation, wave-induced current and variation of mean water leel on a uniformly sloping beach.

  • PDF

The Change of Nearshore Processes due to the Development of Coastal Zone (연안역 개발에 따른 해안과정의 변화)

  • Lee, J.W.;Lee, S.J.;Lee, H.;Jeong, D.D.
    • Journal of Korean Port Research
    • /
    • v.13 no.1
    • /
    • pp.155-166
    • /
    • 1999
  • The construction of the coastal structures and reclamation work causes the circulation reduced in the semi-closed inner water area and the unbalanced sediment budget of beach results in an alteration of beach topography. Among the various fluid motions in the nearshore zone water particle motion due to wave and wave-induced currents are the most responsible for sediment movement. Therefore it is needed to predict the effect of the environmental change because of development and so the prediction of wave transformation dose. The purpose of this study is to introduce the relation between waves wave-induced currents and sediment movement. In this study we will show numerical method using energy conservation equation involving reflection diffraction and reflection and the surfzone energy dissipation term due to wave breaking is included in the basic equation. For the wave-induced current the momentum equation was combined with radiation stresses lateral mixing and friction Various information is required in the prediction of wave-induced current depending on the prediction tool. We can predict changes in wave-induced current from the distribution of wave especially near the wave breaking zone. To evaluate these quantities we have to know the local condition of waves mean sea level and so on. The results from the wave field and wave-induced current field deformation models are used as input data of the sediment transport and bottom change model. Numerical model were established by a finite difference method then were applied to the development plan of the eastern Pusan coastal zone Yeonhwa-ri and Daebyun fishing port. We represented the result with 2-D graphics and made comparison between before and after development.

  • PDF

Boussinesq Modeling of a Rip Current at Haeundae Beach (Boussinesq 방정식 모형을 이용한 해운대 이안류 수치모의)

  • Choi, Jun-Woo;Park, Won-Kyung;Yoon, Sung-Bum
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.23 no.4
    • /
    • pp.276-284
    • /
    • 2011
  • The rip current occurred at Haeundae beach was numerically investigated under directional random wave environment. The numerical simulation was performed using a fully nonlinear Boussinesq equation model, FUNWAVE which is capable of simulating nearshore circulation since it includes the effect of wave-induced momentum flux and horizontal turbulent mixing. The results of numerical simulation show the time-dependent evolution of the wave-induced nearshore circulation system (including rip current) that are caused by nonlinear transformation of directional irregular waves due to unique topography of Haeundae. From the results, it was found that rip current is well generated and developed where relatively lower wave height and relatively deeper water depth along the longshore direction, and sudden and strong events of rip current were observed.

Some High-Frequency Variability of Currents Obtained by "GeoDrifters" in the Tsushima Current Region

  • Seung, Young Ho;Park, Jong Jin;Kwon, Young-Yeon;Kim, Sung-Joon;Kim, Hong-Sun;Park, Yong-Chul
    • Ocean and Polar Research
    • /
    • v.39 no.3
    • /
    • pp.169-179
    • /
    • 2017
  • The "GeoDrifter" is a newly-developed surface drifter with high temporal resolution. It is the first time that high-frequency drifters have been deployed in the East/Japan Sea. The purpose of this study is to introduce the phenomena experienced by these drifters flowing along with the Tsushima Current across the East/Japan Sea, focusing on high-frequency variability, and to discuss them in comparison with previous observations. The observed basin-scale circulation of the Tsushima Current generally coincides well with the known schematic circulation. The GeoDrifter trajectories also show inertial oscillations almost everywhere in the oceanic regions of the East/Japan Sea, strong semi-diurnal tidal currents in the western part of Korea Strait, diurnal currents much stronger than semi-diurnal currents in the upstream region of the Nearshore Branch off the Japanese coast, and many warm eddies in the Yamato Basin, all comparable to the observational results reported in the previous studies. An interesting point is that the semi-diurnal tidal currents undergo a great spatial variation in the western part of the Korea Strait. The observed features that cannot be explained are, among others, strong counter-clockwise motions with oscillating period about 51 hours appearing in the upstream region of the Nearshore Branch off the Japanese coast and the different tidal behaviors between upstream and downstream regions of the latter.