• Title/Summary/Keyword: Nearest neighbor method

Search Result 418, Processing Time 0.038 seconds

An Anomaly Detection Algorithm for Cathode Voltage of Aluminum Electrolytic Cell

  • Cao, Danyang;Ma, Yanhong;Duan, Lina
    • Journal of Information Processing Systems
    • /
    • v.15 no.6
    • /
    • pp.1392-1405
    • /
    • 2019
  • The cathode voltage of aluminum electrolytic cell is relatively stable under normal conditions and fluctuates greatly when it has an anomaly. In order to detect the abnormal range of cathode voltage, an anomaly detection algorithm based on sliding window was proposed. The algorithm combines the time series segmentation linear representation method and the k-nearest neighbor local anomaly detection algorithm, which is more efficient than the direct detection of the original sequence. The algorithm first segments the cathode voltage time series, then calculates the length, the slope, and the mean of each line segment pattern, and maps them into a set of spatial objects. And then the local anomaly detection algorithm is used to detect abnormal patterns according to the local anomaly factor and the pattern length. The experimental results showed that the algorithm can effectively detect the abnormal range of cathode voltage.

Molecular Dynamic Study of a Polymeric Solution (I). Chain-Length Effect

  • Lee Young Seek;Ree Taikyue
    • Bulletin of the Korean Chemical Society
    • /
    • v.3 no.2
    • /
    • pp.44-49
    • /
    • 1982
  • Dynamic and equilibrium structures of a polymer chain immersed in solvent molecules have been investigated by a molecular dynamic method. The calculation employs the Lennard-Jones potential function to represent the interactions between two solvent molecules (SS) and between a constituent particle (monomer unit) of the polymer chain and a solvent molecule (CS) as well as between two non-nearest neighbor constituent particles of the polymer chain (CC), while the chemical bond for nearest neighbor constituent particles was chosen to follow a harmonic oscillator potential law. The correlation function for the SS, CS and CC pairs, the end-to-end distance square and the radius of gyration square were calculated by varying the chain length (= 5, 10, 15, 20). The computed end-to-end distance square and the radius of gyration square were found to be in a fairly good agreement with the corresponding results from the random-flight model. Unlike earlier works, the present simulation rsesult shows that the autocorrelation function of radius of gyration square decays slower than that of the end-to-end distance square.

Stormwater Quality simulation with KNNR Method based on Depth function

  • Lee, Taesam;Park, Daeryong
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.557-557
    • /
    • 2015
  • To overcome main drawbacks of parametric models, k-nearest neighbor resampling (KNNR) is suggested for water quality analysis involving geographic information. However, with KNNR nonparametric model, Geographic information is not properly handled. In the current study, to manipulate geographic information properly, we introduce a depth function which is a novel statistical concept in the classical KNNR model for stormwater quality simulation. An application is presented for a case study of the total suspended solids throughout the entire United States. Total suspended solids concentration data of stormwater demonstrated that the proposed model significantly improves the simulation performance rather than the existing KNNR model.

  • PDF

Fast Access Method of Neighboring Particles Using Bitonic Sort Based GPU Hashing, and Its Applications (바이토닉 정렬 기반의 GPU 해싱을 이용한 인접 입자의 빠른 접근 기법과 그 응용 사례)

  • Lee, SuBin;Kim, Jong-Hyun
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2022.01a
    • /
    • pp.357-360
    • /
    • 2022
  • 본 논문에서는 대용량 데이터에서 빠르게 주변 데이터를 접근하기 위한 자료구조인 최근접 이웃 탐색(Nearest neighbor search, NNS) 문제를 빠르게 풀 수 있는 바이토닉 정렬(Bitonic sort) 기반 해시 테이블을 GPU기반에서 설계하는 방법과 이를 통해 입자 기반 물리 시뮬레이션을 고속화할 수 있는 방법에 대해 살펴본다. 본 논문에서는 CUDA 아키텍처를 이용하여 해시 테이블을 설계하였으며, 계산양이 가장 큰 데이터 정렬부분을 최적화함으로써 NVIDIA에서 제공하는 CUDA 해시 테이블보다 빠른 결과를 얻을 수 있으며, 이 자료구조를 입자 기반 시뮬레이션에 통합함으로써 고성능 시뮬레이션을 쉽게 제작할 수 있다.

  • PDF

Estimating Farmland Prices Using Distance Metrics and an Ensemble Technique (거리척도와 앙상블 기법을 활용한 지가 추정)

  • Lee, Chang-Ro;Park, Key-Ho
    • Journal of Cadastre & Land InformatiX
    • /
    • v.46 no.2
    • /
    • pp.43-55
    • /
    • 2016
  • This study estimated land prices using instance-based learning. A k-nearest neighbor method was utilized among various instance-based learning methods, and the 10 distance metrics including Euclidean distance were calculated in k-nearest neighbor estimation. One distance metric prediction which shows the best predictive performance would be normally chosen as final estimate out of 10 distance metric predictions. In contrast to this practice, an ensemble technique which combines multiple predictions to obtain better performance was applied in this study. We applied the gradient boosting algorithm, a sort of residual-fitting model to our data in ensemble combining. Sales price data of farm lands in Haenam-gun, Jeolla Province were used to demonstrate advantages of instance-based learning as well as an ensemble technique. The result showed that the ensemble prediction was more accurate than previous 10 distance metric predictions.

Mining Proteins Associated with Oral Squamous Cell Carcinoma in Complex Networks

  • Liu, Ying;Liu, Chuan-Xia;Wu, Zhong-Ting;Ge, Lin;Zhou, Hong-Mei
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.8
    • /
    • pp.4621-4625
    • /
    • 2013
  • The purpose of this study was to construct a protein-protein interaction (PPI) network related to oral squamous cell carcinoma (OSCC). Each protein was ranked and those most associated with OSCC were mined within the network. First, OSCC-related genes were retrieved from the Online Mendelian Inheritance in Man (OMIM) database. Then they were mapped to their protein identifiers and a seed set of proteins was built. The seed proteins were expanded using the nearest neighbor expansion method to construct a PPI network through the Online Predicated Human Interaction Database (OPHID). The network was verified to be statistically significant, the score of each protein was evaluated by algorithm, then the OSCC-related proteins were ranked. 38 OSCC related seed proteins were expanded to 750 protein pairs. A protein-protein interaction nerwork was then constructed and the 30 top-ranked proteins listed. The four highest-scoring seed proteins were SMAD4, CTNNB1, HRAS, NOTCH1, and four non-seed proteins P53, EP300, SMAD3, SRC were mined using the nearest neighbor expansion method. The methods shown here may facilitate the discovery of important OSCC proteins and guide medical researchers in further pertinent studies.

The Performance Improvement of Face Recognition Using Multi-Class SVMs (다중 클래스 SVMs를 이용한 얼굴 인식의 성능 개선)

  • 박성욱;박종욱
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.41 no.6
    • /
    • pp.43-49
    • /
    • 2004
  • The classification time required by conventional multi-class SVMs(Support Vector Machines) greatly increases as the number of pattern classes increases. This is due to the fact that the needed set of binary class SVMs gets quite large. In this paper, we propose a method to reduce the number of classes by using nearest neighbor rule (NNR) in the principle component analysis and linear discriminant analysis (PCA+LDA) feature subspace. The proposed method reduces the number of face classes by selecting a few classes closest to the test data projected in the PCA+LDA feature subspace. Results of experiment show that our proposed method has a lower error rate than nearest neighbor classification (NNC) method. Though our error rate is comparable to the conventional multi-class SVMs, the classification process of our method is much faster.

Facial Expression Recognition using ICA-Factorial Representation Method (ICA-factorial 표현법을 이용한 얼굴감정인식)

  • Han, Su-Jeong;Kwak, Keun-Chang;Go, Hyoun-Joo;Kim, Sung-Suk;Chun, Myung-Geun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.13 no.3
    • /
    • pp.371-376
    • /
    • 2003
  • In this paper, we proposes a method for recognizing the facial expressions using ICA(Independent Component Analysis)-factorial representation method. Facial expression recognition consists of two stages. First, a method of Feature extraction transforms the high dimensional face space into a low dimensional feature space using PCA(Principal Component Analysis). And then, the feature vectors are extracted by using ICA-factorial representation method. The second recognition stage is performed by using the Euclidean distance measure based KNN(K-Nearest Neighbor) algorithm. We constructed the facial expression database for six basic expressions(happiness, sadness, angry, surprise, fear, dislike) and obtained a better performance than previous works.

Appearance-based Object Recognition Using Higher Order Local Auto Correlation Feature Information (고차 국소 자동 상관 특징 정보를 이용한 외관 기반 객체 인식)

  • Kang, Myung-A
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.7
    • /
    • pp.1439-1446
    • /
    • 2011
  • This paper describes the algorithm that lowers the dimension, maintains the object recognition and significantly reduces the eigenspace configuration time by combining the higher correlation feature information and Principle Component Analysis. Since the suggested method doesn't require a lot of computation than the method using existing geometric information or stereo image, the fact that it is very suitable for building the real-time system has been proved through the experiment. In addition, since the existing point to point method which is a simple distance calculation has many errors, in this paper to improve recognition rate the recognition error could be reduced by using several successive input images as a unit of recognition with K-Nearest Neighbor which is the improved Class to Class method.

A novel clustering method for examining and analyzing the intellectual structure of a scholarly field (지적 구조 분석을 위한 새로운 클러스터링 기법에 관한 연구)

  • Lee, Jae-Yun
    • Journal of the Korean Society for information Management
    • /
    • v.23 no.4 s.62
    • /
    • pp.215-231
    • /
    • 2006
  • Recently there are many bibliometric studies attempting to utilize Pathfinder networks(PFNets) for examining and analyzing the intellectual structure of a scholarly field. Pathfinder network scaling has many advantages over traditional multidimensional scaling, including its ability to represent local details as well as global intellectual structure. However there are some limitations in PFNets including very high time complexity. And Pathfinder network scaling cannot be combined with cluster analysis, which has been combined well with traditional multidimensional scaling method. In this paper, a new method named as Parallel Nearest Neighbor Clustering (PNNC) are proposed for complementing those weak points of PFNets. Comparing the clustering performance with traditional hierarchical agglomerative clustering methods shows that PNNC is not only a complement to PFNets but also a fast and powerful clustering method for organizing informations.