• Title/Summary/Keyword: Nearest neighbor distance Method

Search Result 67, Processing Time 0.025 seconds

The Method to Process Nearest Neighbor Queries using Maximun Distance in Multimedia Database Systems (멀티미디어 데이터베이스 시스템에서 최대거리를 이용한 K-최대근접질의 처리 방법)

  • Seon, Hwi-Joon;Shin, Seong-Chul
    • Journal of the Korea Computer Industry Society
    • /
    • v.5 no.9
    • /
    • pp.1025-1030
    • /
    • 2004
  • In multimedia database systems, the k nearest neighbor query occurs frerluently and requires the processing cost higher than other spatial queries do. The numberof searched nodes and the computation time in an index can be minimized for optimizing the cost of processing the k nearest neighbor query. In this paper, we propose the search distance which can reduce the computation time of the optimal search distance.

  • PDF

Dynamic Nearest Neighbor Query Processing for Moving Vehicles (이동하는 차량들간 최근접 질의 처리 기법)

  • Lee, Myong-Soo;Shim, Kyu-Sun;Lee, Sang-Keun
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.9 no.1
    • /
    • pp.1-8
    • /
    • 2010
  • For three and more rapidly moving vehicles, they want to search the nearest location for meeting. Each vehicle has a different velocity and a efficient method is needed for shifting a short distance. It is observed that the existing group nearest-neighbor query has been investigated for static query points; however these studies do not extend to highly dynamic vehicle environments. In this paper, we propose a novel Dynamic Nearest-Neighbor query processing for Multiple Vehicles (DNN_MV). Our method retrieves the nearest neighbor for a group of moving query points with a given vector and takes the direction of moving query points with a given vector into consideration for DNN_MV. Our method efficiently calculates a group nearest neighbor through a centroid point that represents the group of moving query points. The experimental results show that the proposed method operates efficiently in a dynamic group nearest neighbor search.

Discriminant Metric Learning Approach for Face Verification

  • Chen, Ju-Chin;Wu, Pei-Hsun;Lien, Jenn-Jier James
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.2
    • /
    • pp.742-762
    • /
    • 2015
  • In this study, we propose a distance metric learning approach called discriminant metric learning (DML) for face verification, which addresses a binary-class problem for classifying whether or not two input images are of the same subject. The critical issue for solving this problem is determining the method to be used for measuring the distance between two images. Among various methods, the large margin nearest neighbor (LMNN) method is a state-of-the-art algorithm. However, to compensate the LMNN's entangled data distribution due to high levels of appearance variations in unconstrained environments, DML's goal is to penalize violations of the negative pair distance relationship, i.e., the images with different labels, while being integrated with LMNN to model the distance relation between positive pairs, i.e., the images with the same label. The likelihoods of the input images, estimated using DML and LMNN metrics, are then weighted and combined for further analysis. Additionally, rather than using the k-nearest neighbor (k-NN) classification mechanism, we propose a verification mechanism that measures the correlation of the class label distribution of neighbors to reduce the false negative rate of positive pairs. From the experimental results, we see that DML can modify the relation of negative pairs in the original LMNN space and compensate for LMNN's performance on faces with large variances, such as pose and expression.

Model-Based Object Recognition using PCA & Improved k-Nearest Neighbor (PCA와 개선된 k-Nearest Neighbor를 이용한 모델 기반형 물체 인식)

  • Jung Byeong-Soo;Kim Byung-Gi
    • The KIPS Transactions:PartB
    • /
    • v.13B no.1 s.104
    • /
    • pp.53-62
    • /
    • 2006
  • Object recognition techniques using principal component analysis are disposed to be decreased recognition rate when lighting change of image happens. The purpose of this thesis is to propose an object recognition technique using new PCA analysis method that discriminates an object in database even in the case that the variation of illumination in training images exists. And the object recognition algorithm proposed here represents more enhanced recognition rate using improved k-Nearest Neighbor. In this thesis, we proposed an object recognition algorithm which creates object space by pre-processing and being learned image using histogram equalization and median filter. By spreading histogram of test image using histogram equalization, the effect to change of illumination is reduced. This method is stronger to change of illumination than basic PCA method and normalization, and almost removes effect of illumination, therefore almost maintains constant good recognition rate. And, it compares ingredient projected test image into object space with distance of representative value and recognizes after representative value of each object in model image is made. Each model images is used in recognition unit about some continual input image using improved k-Nearest Neighbor in this thesis because existing method have many errors about distance calculation.

Nearest Neighbor Query Processing in the Mobile Environment

  • Choi Hyun Mi;Jung Young Jin;Lee Eung Jae;Ryu Keun Ho
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.677-680
    • /
    • 2004
  • In the mobile environment, according to the movement of the object, the query finds the nearest special object or place from object position. However, because query object moves continuously in the mobile environment, query demand changes according to the direction attribute of query object. Also, in the case of moving of query object and simply the minimum distance value of query result, sometimes we find the result against the query object direction. Especially, in most road condition, as user has to return after reaching U-turn area, user rather spends time and cost. Therefore, in order to solve those problems, in this paper we propose the nearest neighbor method considering moving object position and direction for mobile recommendation system.

  • PDF

Estimating Farmland Prices Using Distance Metrics and an Ensemble Technique (거리척도와 앙상블 기법을 활용한 지가 추정)

  • Lee, Chang-Ro;Park, Key-Ho
    • Journal of Cadastre & Land InformatiX
    • /
    • v.46 no.2
    • /
    • pp.43-55
    • /
    • 2016
  • This study estimated land prices using instance-based learning. A k-nearest neighbor method was utilized among various instance-based learning methods, and the 10 distance metrics including Euclidean distance were calculated in k-nearest neighbor estimation. One distance metric prediction which shows the best predictive performance would be normally chosen as final estimate out of 10 distance metric predictions. In contrast to this practice, an ensemble technique which combines multiple predictions to obtain better performance was applied in this study. We applied the gradient boosting algorithm, a sort of residual-fitting model to our data in ensemble combining. Sales price data of farm lands in Haenam-gun, Jeolla Province were used to demonstrate advantages of instance-based learning as well as an ensemble technique. The result showed that the ensemble prediction was more accurate than previous 10 distance metric predictions.

Molecular Dynamic Study of a Polymeric Solution (I). Chain-Length Effect

  • Lee Young Seek;Ree Taikyue
    • Bulletin of the Korean Chemical Society
    • /
    • v.3 no.2
    • /
    • pp.44-49
    • /
    • 1982
  • Dynamic and equilibrium structures of a polymer chain immersed in solvent molecules have been investigated by a molecular dynamic method. The calculation employs the Lennard-Jones potential function to represent the interactions between two solvent molecules (SS) and between a constituent particle (monomer unit) of the polymer chain and a solvent molecule (CS) as well as between two non-nearest neighbor constituent particles of the polymer chain (CC), while the chemical bond for nearest neighbor constituent particles was chosen to follow a harmonic oscillator potential law. The correlation function for the SS, CS and CC pairs, the end-to-end distance square and the radius of gyration square were calculated by varying the chain length (= 5, 10, 15, 20). The computed end-to-end distance square and the radius of gyration square were found to be in a fairly good agreement with the corresponding results from the random-flight model. Unlike earlier works, the present simulation rsesult shows that the autocorrelation function of radius of gyration square decays slower than that of the end-to-end distance square.

Image Feature Point Selection Method Using Nearest Neighbor Distance Ratio Matching (최인접 거리 비율 정합을 이용한 영상 특징점 선택 방법)

  • Lee, Jun-Woo;Jeong, Jea-Hyup;Kang, Jong-Wook;Na, Sang-Il;Jeong, Dong-Seok
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.49 no.12
    • /
    • pp.124-130
    • /
    • 2012
  • In this paper, we propose a feature point selection method for MPEG CDVS CE-7 which is processing on International Standard task. Among a large number of extracted feature points, more important feature points which is used in image matching should be selected for the compactness of image descriptor. The proposed method is that remove the feature point in the extraction phase which is filtered by nearest neighbor distance ratio matching in the matching phase. We can avoid the waste of the feature point and employ additional feature points by the proposed method. The experimental results show that our proposed method can obtain true positive rate improvement about 2.3% in pair-wise matching test compared with Test Model.

Case-Based Reasoning Cost Estimation Model Using Two-Step Retrieval Method

  • Lee, Hyun-Soo;Seong, Ki-Hoon;Park, Moon-Seo;Ji, Sae-Hyun;Kim, Soo-Young
    • Land and Housing Review
    • /
    • v.1 no.1
    • /
    • pp.1-7
    • /
    • 2010
  • Case-based reasoning (CBR) method can make estimators understand the estimation process more clearly. Thus, CBR is widely used as a methodology for cost estimation. In CBR, the quality of case retrieval affects the relevance of retrieved cases and hence the overall quality of the reminding capability of CBR system. Thus, it is essential to retrieve relevant past cases for establishing a robust CBR system. Case retrieval needs the following tasks to obtain appropriate case(s); indexing, search, and matching (Aamodt and Plaza 1994). However, the previous CBR researches mostly deal with matching process that has limits such as accuracy and efficiency of case retrieval. In order to address this issue, this research presents a CBR cost model for building projects that has two-step retrieval process: decision tree and nearest neighbor methods. Specifically, the proposed cost model has indexing, search and matching modules. Features in the model are divided into shape-based and scale-based attributes. Based on these, decision tree is established for facilitating the search task and nearest neighbor method was utilized for matching task. In regard to applying nearest neighbor method, attribute weights are assigned using GA optimization and similarity is calculated using the principle of distance measuring. Thereafter, the proposed CBR cost model is developed using 174 cases and validated using 12 test cases.

A Comparison of Distance Metric Learning Methods for Face Recognition (얼굴인식을 위한 거리척도학습 방법 비교)

  • Suvdaa, Batsuri;Ko, Jae-Pil
    • Journal of Korea Multimedia Society
    • /
    • v.14 no.6
    • /
    • pp.711-718
    • /
    • 2011
  • The k-Nearest Neighbor classifier that does not require a training phase is appropriate for a variable number of classes problem like face recognition, Recently distance metric learning methods that is trained with a given data set have reported the significant improvement of the kNN classifier. However, the performance of a distance metric learning method is variable for each application, In this paper, we focus on the face recognition and compare the performance of the state-of-the-art distance metric learning methods, Our experimental results on the public face databases demonstrate that the Mahalanobis distance metric based on PCA is still competitive with respect to both performance and time complexity in face recognition.