• Title/Summary/Keyword: Nearest Neighbors

Search Result 232, Processing Time 0.034 seconds

Minimization of Crosstalk by Optimum Synthesis of Profiles of Multiple Coupled Data Transmission Lines on Microstrip (다중결합된 마이크로스트립 데이터 전송로 자태의 최적합성을 통한 누화 최소화)

  • 박의준
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.35D no.12
    • /
    • pp.1-11
    • /
    • 1998
  • A line profile synthesis method is presented that minimizes the nearest-neighbor crosstalk peak level for high-speed pulse transmission in multi-coupled microstrip signal buses. We adopted the optimization technique for the reflected wave control on bus lines resulting in increasing the average spacing between strip conductors, since in a parallel-conductor bus the crosstalk energy is concentrated at the nearest neighbors of the driven line. The generalized S-matrix technique is applied for the input and output waveform prediction, and crosstalk characteristics of various nonuniform lines synthesized for increasing the average spacing are analyzed by comparing each other. Simulation results demonstrate that the Chebyshev taper with dips is adequate to significantly minimize the crosstalk peak level under the satisfactory waveform integrity since the profile is oriented to evenly reflect significant pulse spectra within the frequency range of pulse.

  • PDF

Intergalactic Magnetic Field and Arrival Direction of Ultra-High-Energy Iron Nuclei

  • Ryu, Dongsu;Kang, Hyesung;Das, Santabrata
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.78.2-78.2
    • /
    • 2012
  • We have studied how the intergalactic magnetic field (IGMF) affects the propagation of super-GZK iron nuclei that originate from extragalactic sources within the local GZK sphere. Toward this end, we set up hypothetical sources of ultra-high-energy cosmic-rays (UHECRs), virtual observers, and the magnetized cosmic web in a model universe constructed from cosmological structure formation simulations. We then arranged a set of reference objects at high density region to represent astronomical objects formed in the large scale structure (LSS). With our model IGMF, the paths of UHE iron nuclei are deflected on average by about 70 degrees, which might indicate a nearly isotropic distribution of arrival directions. However, the separation angle between the arrival directions and the nearest reference object on the LSS is only ~6 degrees, which is twice the mean distance to the nearest neighbors among the reference objects. This means that the positional correlation of observed UHE iron events with their true sources would be erased by the IGMF, but the correlation with the LSS itself is to be sustained. We discuss implications of our findings for correlations studies of real UHECR events.

  • PDF

Supervised learning and frequency domain averaging-based adaptive channel estimation scheme for filterbank multicarrier with offset quadrature amplitude modulation

  • Singh, Vibhutesh Kumar;Upadhyay, Nidhi;Flanagan, Mark;Cardiff, Barry
    • ETRI Journal
    • /
    • v.43 no.6
    • /
    • pp.966-977
    • /
    • 2021
  • Filterbank multicarrier with offset quadrature amplitude modulation (FBMC-OQAM) is an attractive alternative to the orthogonal frequency division multiplexing (OFDM) modulation technique. In comparison with OFDM, the FBMC-OQAM signal has better spectral confinement and higher spectral efficiency and tolerance to synchronization errors, primarily due to per-subcarrier filtering using a frequency-time localized prototype filter. However, the filtering process introduces intrinsic interference among the symbols and complicates channel estimation (CE). An efficient way to improve the CE in FBMC-OQAM is using a technique known as windowed frequency domain averaging (FDA); however, it requires a priori knowledge of the window length parameter which is set based on the channel's frequency selectivity (FS). As the channel's FS is not fixed and not a priori known, we propose a k-nearest neighbor-based machine learning algorithm to classify the FS and decide on the FDA's window length. A comparative theoretical analysis of the mean-squared error (MSE) is performed to prove the proposed CE scheme's effectiveness, validated through extensive simulations. The adaptive CE scheme is shown to yield a reduction in CE-MSE and improved bit error rates compared with the popular preamble-based CE schemes for FBMC-OQAM, without a priori knowledge of channel's frequency selectivity.

Automated Phase Identification in Shingle Installation Operation Using Machine Learning

  • Dutta, Amrita;Breloff, Scott P.;Dai, Fei;Sinsel, Erik W.;Warren, Christopher M.;Wu, John Z.
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.728-735
    • /
    • 2022
  • Roofers get exposed to increased risk of knee musculoskeletal disorders (MSDs) at different phases of a sloped shingle installation task. As different phases are associated with different risk levels, this study explored the application of machine learning for automated classification of seven phases in a shingle installation task using knee kinematics and roof slope information. An optical motion capture system was used to collect knee kinematics data from nine subjects who mimicked shingle installation on a slope-adjustable wooden platform. Four features were used in building a phase classification model. They were three knee joint rotation angles (i.e., flexion, abduction-adduction, and internal-external rotation) of the subjects, and the roof slope at which they operated. Three ensemble machine learning algorithms (i.e., random forests, decision trees, and k-nearest neighbors) were used for training and prediction. The simulations indicate that the k-nearest neighbor classifier provided the best performance, with an overall accuracy of 92.62%, demonstrating the considerable potential of machine learning methods in detecting shingle installation phases from workers knee joint rotation and roof slope information. This knowledge, with further investigation, may facilitate knee MSD risk identification among roofers and intervention development.

  • PDF

Forest Thematic Maps and Forest Statistics Using the k-Nearest Neighbor Technique for Pyeongchang-Gun, Gangwon-Do (kNN 기법을 이용한 강원도 평창군의 산림 주제도 작성과 산림통계량 추정)

  • Yim, Jong-Su;Kong, Gee Su;Kim, Sung Ho;Shin, Man Yong
    • Journal of Korean Society of Forest Science
    • /
    • v.96 no.3
    • /
    • pp.259-268
    • /
    • 2007
  • This study was conducted to produce forest thematic maps and estimate forest statistics for Pyeongchang Gun using the kNN technique, which has been applied to produce thematic maps of variables of interest including unobserved plots by combining field plot data, remotely sensed data and other digital map data in forest inventories. The estimation errors for three horizontal reference areas (HRAs), whose radii are 20, 40 and 60 km respectively, were compared. Although the precision for the 40 km radius was lower compared to that for the 60 km radius, the 40 km radius was found to be an efficient HRA because their difference in precision was modest. At a value of k=5 nearest neighbors for the selected HRA, the overall accuracy was high. As a result, using the k=5 neighbors within the HRA of 40 km radius, thematic maps of number of trees, basal area, and growing stock per hectare were generated. As compared to the forest statistics based on field sample plots, the estimated means of each parameter from the produced maps were underestimated.

Analysis of Performance Improvement of Collaborative Filtering based on Neighbor Selection Criteria (이웃 선정 조건에 따른 협력 필터링의 성능 향상 분석)

  • Lee, Soojung
    • The Journal of Korean Association of Computer Education
    • /
    • v.18 no.4
    • /
    • pp.55-62
    • /
    • 2015
  • Recommender systems through collaborative filtering has been utilized successfully in various areas by providing with convenience in searching information. Measuring similarity is critical in determining performance of these systems, because it is the criteria for the range of recommenders. This study analyzes distributions of similarity from traditional measures and investigates relations between similarities and the number of co-rated items. With this, this study suggests a method for selecting reliable recommenders by restricting similarities, which compensates for the drawbacks of previous measures. Experimental results showed that restricting similarities of neighbors by upper and lower thresholds yield superior performance than previous methods, especially when consulting fewer nearest neighbors. Maximum improvement of 0.047 for cosine similarity and that of 0.03 for Pearson was achieved. This result tells that a collaborative filtering system using Pearson or cosine similarities should not consult neighbors with very high or low similarities.

An Efficient KNN Query Processing Method in Sensor Networks (센서 네트워크에서 효율적인 KNN 질의처리 방법)

  • Son, In-Keun;Hyun, Dong-Joon;Chung, Yon-Dohn;Lee, Eun-Kyu;Kim, Myoung-Ho
    • Journal of KIISE:Databases
    • /
    • v.32 no.4
    • /
    • pp.429-440
    • /
    • 2005
  • As rapid improvement in electronic technologies makes sensor hardware more powerful and capable, the application range of sensor networks Is getting to be broader. The main purpose of sensor networks is to monitor the phenomena in interesting regions (e.g., factory warehouses, disaster areas, wild fields, etc) and return required data. The k Nearest Neighbor (KNN) query that finds k objects which are geographically close to the given point is an Important application in sensor networks. However, most previous approaches are either seem to be impractical or are not energy-efficient in resource-limited sensor networks. In this paper. we propose an efficient KNN query processing method in sensor networks. In the proposed method, we dynamically increase searching boundary, if necessary, and traverse nodes inside the boundary until finding k nearest neighbors. Since only the representative sensor nodes are visited, our algorithm reduces a number of messages. We show thorough experiments that the proposed method performs better than the existing method in various network environments.

Comparison of the performance of classification algorithms using cytotoxicity data (세포독성 자료를 이용한 분류 알고리즘 성능 비교)

  • Yoon, Yeochang;Jeung, Eui Bae;Jo, Na Rae;Ju, Su In;Lee, Sung Duck
    • The Korean Journal of Applied Statistics
    • /
    • v.31 no.3
    • /
    • pp.417-426
    • /
    • 2018
  • An alternative developmental toxicity test using mouse embryonic stem cell derived embryoid bodies has been developed. This alternative method is not to administer chemicals to animals, but to treat chemicals with cells. This study suggests the use of Discriminant Analysis, Support Vector Machine, Artificial Neural Network and k-Nearest Neighbor. Algorithm performance was compared with accuracy and a weighted Cohen's kappa coefficient. In application, various classification techniques were applied to cytotoxicity data to classify drug toxicity and compare the results.

Grid-based Index Generation and k-nearest-neighbor Join Query-processing Algorithm using MapReduce (맵리듀스를 이용한 그리드 기반 인덱스 생성 및 k-NN 조인 질의 처리 알고리즘)

  • Jang, Miyoung;Chang, Jae Woo
    • Journal of KIISE
    • /
    • v.42 no.11
    • /
    • pp.1303-1313
    • /
    • 2015
  • MapReduce provides high levels of system scalability and fault tolerance for large-size data processing. A MapReduce-based k-nearest-neighbor(k-NN) join algorithm seeks to produce the k nearest-neighbors of each point of a dataset from another dataset. The algorithm has been considered important in bigdata analysis. However, the existing k-NN join query-processing algorithm suffers from a high index-construction cost that makes it unsuitable for the processing of bigdata. To solve the corresponding problems, we propose a new grid-based, k-NN join query-processing algorithm. Our algorithm retrieves only the neighboring data from a query cell and sends them to each MapReduce task, making it possible to improve the overhead data transmission and computation. Our performance analysis shows that our algorithm outperforms the existing scheme by up to seven-fold in terms of the query-processing time, while also achieving high extent of query-result accuracy.

Performance analysis of maximum likelihood detection for the spatial multiplexing system with multiple antennas (다중 안테나를 갖는 공간 다중화 시스템을 위한 maximum likelihood 검출기의 성능 분석)

  • Shin Myeongcheol;Song Young Seog;Kwon Dong-Seung;Seo Jeongtae;Lee Chungyong
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.42 no.12
    • /
    • pp.103-110
    • /
    • 2005
  • The performance of maximum likelihood(ML) detection for the given channel is analyzed in spatially multiplexed MIMO system. In order to obtain the vector symbol error rate, we define error vectors which represent the geometrical relation between lattice points. The properties of error vectors are analyzed to show that all lattice points in infinite lattice almost surely have four nearest neighbors after random channel transformation. Using this information and minimum distance obtained by the modified sphere decoding algorithm, we formulate the analytical performance of vector symbol error over the given channel. To verify the result, we simulate ML performance over various random channel which are classified into three categories: unitary channel, dense channel, and sparse channel. From the simulation results, it is verified that the derived analytical result gives a good approximation about the performance of ML detector over the all random MIMO channels.