• Title/Summary/Keyword: Nearest Neighbor (NN)

검색결과 219건 처리시간 0.028초

이동방송 환경에서의 효율적인 NN 탐색 기법 (An Efficient Searching Method for Nearest Neighbor in Mobile Broadcast Environments)

  • 이명수;이상근
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2005년도 가을 학술발표논문집 Vol.32 No.2 (2)
    • /
    • pp.160-162
    • /
    • 2005
  • 무선 방송 방식은 부족한 대역폭의 효율적인 활용과 채널을 듣는 모든 사용자를 지원할 수 있다는 효율성 측면에서 각광받고 있다. 위치기반 서비스 중에서도 효율적인 방송기법을 이용하기 위한 연구 및 가장 기본적인 질의 중 하나인 NN 질의를 효율적으로 수행하기 위한 연구가 이루어져 왔다. 그러나 기존의 연구된 기법들은 NN 탐색 시 하나 이상의 방송주기를 필요로 하여 긴 접근 시간을 가진다는 단점이 있다. 이러한 단점을 모바일 환경에서 비효율적으로 자원을 사용한다는 문제를 발생시킨다. 이에 따라 본 논문에서는 한층 효율적인 자원 사용을 위해서 무선 기기에서 무선 방송 채널을 통해 NN 탐색을 수행할 수 있는 새로운 기법을 제안하고자 한다. 기존의 기법들에 비해서 접근 시간과 튜닝 시간을 줄임으로써 본 논문에서는 효율적으로 자원을 사용하고자 한다. 또한, 실험을 통해 본 논문에서 제안한 기법이 기존의 기법보다. 향상된 성능을 보이는 것을 증명한다.

  • PDF

k-NN 기법을 이용한 학습자 데이터의 노이즈 선별 방법 (Noise-Reduction of Student's Learning Data using k-NN Method)

  • 윤태복;이지형;정영모;차현진;박선희;김용세
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2006년도 추계학술대회 학술발표 논문집 제16권 제2호
    • /
    • pp.135-138
    • /
    • 2006
  • 사용자 모델링을 위해서는 사용자의 성향 및 행위 등의 다양한 정보를 수집하여 분석에 이용한다. 하지만 사용자(인간)로 부터 얻은 데이터는 기계나 환경에서 수집된 데이터 보다 패턴을 찾기 힘들어 모델링하기 어렵다. 그 이유는 사용자는 사용자의 현재 상태와 상황에 따라 다양한 결과를 보이며, 일관성을 유지 하지 않는 경우가 있기 때문이다. 사용자 모델링을 위해서는 분산되어 있는 데이터에서 노이즈를 선별하고 연관성 있는 데이터를 분류할 수 있는 기술이 필요하다. 본 논문은 사용자로 부터 수집된 데이터를 k-NN(Nearest Neighbor) 기법을 이용하여 노이즈를 선별한다. 노이즈가 제거된 데이터는 의사결정나무(Decision Tree)방법을 이용하여 학습하였고, 노이즈가 분류되기 전과 비교 분석 하였다. 실험에서는 홈 인테리어 학습 컨텐츠인 DOLLS-HI를 이용하여 수집된 학습자의 데이터를 이용하였고, 생성된 학습자 모델링의 신뢰도가 높아지는 것을 확인하였다.

  • PDF

무선 방송 환경에서 제한된 지역의 NN 질의 처리 방법 (Constrained Nearest Neighbor Query Processing in Wireless Broadcast Environments)

  • 이명수;류병걸;오재오;이상근
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2008년도 추계학술발표대회
    • /
    • pp.271-274
    • /
    • 2008
  • 위치기반 서비스는 모바일 기기와 무선 통신 기술의 발달로 인해 유비쿼터스 정보 접근의 요구에 따라 많은 관심을 받고 있다. 위치기반서비스 중에서 제한된 지역의 NN 질의는 무선 통신을 통해 그 수요가 급격히 증가하고 있는 절의 중 하나이다. 무선 방송 채널의 효율적 사용과 제한된 자원을 가진 무선 기기에서 제한된 지역의 NN 질의를 효율적으로 수행하기 위해 무선 방송환경에서 적합한 질의 처리 방법을 제안한다. 본 논문에서는 기존의 무선방송환경에서 적합한 기법인 분산 공간 색인 기법 기반한 제한된 지역의 NN 질의 방법을 제안하였으며 본 기법은 다른 기법에 비해 접근 시간과 튜닝시간에 대하여 좋은 성능을 보인다.

k-NN기법을 이용한 산림바이오매스 자원량 평가 - 강원대학교 학술림을 대상으로 - (Assessment of Forest Biomass using k-Neighbor Techniques - A Case Study in the Research Forest at Kangwon National University -)

  • 서환석;박동환;임종수;이정수
    • 한국산림과학회지
    • /
    • 제101권4호
    • /
    • pp.547-557
    • /
    • 2012
  • 본 연구는 강원대학교 학술림을 대상으로 현장조사자료와 Landsat TM-5 위성영상 정보를 이용하여 k-NN기법을 통해 산림바이오매스를 추정하는 것을 목적으로 하였다. 임상 층화 및 최소수평 참조거리(HRA)와 공간필터링의 조건변화에 따른 최적의 참조표본점 개수(k)를 검토하였으며, 이에 따른 산림바이오매스량 추정과 정확도를 비교 분석하였다. 침엽수는 $5{\times}5$ 필터링을 적용한 HRA 4 km와 k=8를 적용하였을 때 최소의 RMSE를 나타냈으며, 편차는 1.8 t/ha으로 과대추정되었다. 한편, 잣나무와 활엽수는 필터링을 적용하지 않은 HRA 4km의 k=8과 HRA 10 km의 k=6을 적용하였을 때 최소의 RMSE가 나타났으며, 편차는 각각 -1.6 t/ha, -5.2 t/ha로 과소추정되었다. k-NN기법에 의하여 추정된 총 바이오매스량은 799천t이며, ha당 평균 산림바이오매스량은 237 t/ha로서 표본점자료를 이용한 추정치보다 약 1 t/ha 높게 나타났다.

보로노이 다이어그램의 경계지점 최소거리 행렬 기반 k-최근접점 탐색 알고리즘 (k-NN Query Processing Algorithm based on the Matrix of Shortest Distances between Border-point of Voronoi Diagram)

  • 엄정호;장재우
    • 한국공간정보시스템학회 논문지
    • /
    • 제11권1호
    • /
    • pp.105-114
    • /
    • 2009
  • 최근 사용자에게 자신과 가장 가까운 k 개의 주유소, 레스토랑, 은행 등의 POI(Point Of Interest) 정보를 추천해주는 위치 기반 서비스가 텔레매틱스, ITS(Intelligent Transport Systems), 키오스크(kiosk)등의 어플리케이션에서 필요로 하고 있다. 이를 위해, 보로노이 다이어그램 k-최근접점 탐색 알고리즘이 제안되었다. 이는 보로노이 다이어그램에서 각 POI의 네트워크의 거리를 미리 계산한 파일을 이용하여 k-최근접점 탐색을 수행한다. 그러나 이 알고리즘은 보로노이 다이어그램 확장에 따른 비용 문제를 야기한다. 따라서 본 논문에서는 보로노이 다이어그램의 경계지점마다 각각에 대하여 최소거리 행렬을 생성하는 알고리즘을 제안한다. 또한 k 개의 POI를 탐색하기 위해, 최소거리 행렬을 이용한 k-최근접점 탐색 알고리즘을 제안한다. 제안하는 알고리즘은 미리 계산된 경계 지점 간 최소거리 행렬을 통해 탐색하므로, k-최근 접점 탐색 시 보로노이 다이어그램의 확장비용을 최소화한다. 아울러 기존 연구와의 성능비교를 통해 제안하는 알고리즘이 기존 알고리즘에 비해 검색시간 측면에서 성능이 우수함을 보인다.

  • PDF

단백질 서열의 n-Gram 자질을 이용한 세포내 위치 예측 (Classification Protein Subcellular Locations Using n-Gram Features)

  • 김진숙
    • 한국콘텐츠학회:학술대회논문집
    • /
    • 한국콘텐츠학회 2007년도 추계 종합학술대회 논문집
    • /
    • pp.12-16
    • /
    • 2007
  • 단백질의 기능은 그 기능을 발휘하는 세포내의 위치와 밀접한 연관이 있다. 따라서 새로운 단백질의 서열이 밝혀지면 이 단백질의 세포내 위치를 규명하는 것은 생물학적으로 매우 중요한 일이다. 이 논문에서는 단백질의 n-그램과 kNN (k-Nearest Neighbor) 분류기를 이용한 새로운 세포내 위치예측 방법을 다룬다. 이 방법은 입력 단백질 서열과 가장 유사한 가중치를 가지는 k개의 단백질이 가지는 세포내 위치 정보들을 취합하여 입력 단백질의 세포내 위치를 추정한다. 단백질간의 유사도 가중치는 두 단백질서열의 5-그램 자질의 유사도를 비교하여 계산된다. 단백질의 세포내 위치예측 정확도를 검증하기 위해 SWISS-PROT 단백질 데이터베이스로 부터 세포내 위치가 알려진 51,885개의 서열을 추출하여 대용량 테스트 컬렉션을 구축하였으며, 다른 연구자들이 제공하는 또 하나의 소용량 테스트 컬렉션을 실험에 사용하였다. 이 논문에서 사용한 예측방법은 대용량 테스트컬렉션에 대해 약 93%의 정확도를 보여주었으며, 소용량 데스트컬렉션을 이용하여 이전 실험과 비교하였을 때도 이 방법이 다른 시스템에 비해 성능이 우월함을 알 수 있었다.

  • PDF

자기 조직화 맵 기반 유사화상 검색의 고속화 수법 (A Method of Highspeed Similarity Retrieval based on Self-Organizing Maps)

  • 오군석;양성기;배상현;김판구
    • 정보처리학회논문지B
    • /
    • 제8B권5호
    • /
    • pp.515-522
    • /
    • 2001
  • 특징정보를 기반으로 한 유사화상 검색은 화상 데이터베이스에 있어서 중요한 과제의 하나이다. 화상 데이터의 특징정보를 각 화상을 식별하는데 유용한 정보이다. 본 논문에서는 자기조직화 맵기반의 고속 k-NN 탐색 알고리즘을 제안한다. 자기조직화 맵은 학습을 통하여 고차원 특징벡터를 2차원 공간에 맵핑함으로서 위상 특징맵을 생성한다. 위상 특징맵은 입력 데이터의 특징공간의 상호간의 유사성을 가지고 있으며, 각 노드는 노드벡터와 각 노드벡터에 가장 가까운 유사화상이 분류된다. 이러한 자기조직화 맴에 의한 유사화상 분류결과에 대한 k-NN 탐색을 구현하기 위한여, (1) 위상특징 맵에 대한 접근방법, (2) 고속탐색을 위한 pruning strategy의 적용을 실현하였다. 본 연구에서는 실험을 통하여 실제화상으로부터 추출한 색상 특징을 사용하여 제안한 알고리즘의 성능을 평가함으로써 유사화상 검색에 유효한 결과를 얻을 수 있었다.

  • PDF

고유얼굴에 의한 얼굴인식 (Face Recognition using Eigenface)

  • 박중조;김경민
    • 융합신호처리학회논문지
    • /
    • 제2권2호
    • /
    • pp.1-6
    • /
    • 2001
  • 고유얼굴 방법에 의한 얼굴인식은 얼굴 표정의 변화에 둔감한 유용한 인식기법이나 인식률이 낮아 지속적인 연구가 필요한 실정이다. 본 논문에서는 고유얼굴 특징을 이용한 얼굴인식에 있어서 인식률 개선을 위한 효과적인 방안을 제시한다. 이를 위해 본 연구에서는 고유얼굴 특징에 대해 세 종류의 분류기-단일원형 분류기, 최소거리 분류기, 신경회로망 분류기-를 사용하여 그 성능을 평가하고 분석함으로써 고유얼굴 특징의 분포 특성을 고찰하고, 분류기 및 학습용 샘플 영상의 선정이 인식률 제고에 큰 영향을 미침을 보인다. ORL 얼굴영상 데이터베이스를 사용하여 실험한 결과 최소거리 분류기가 가장 좋은 인식률을 나타내었으며, 학습용 샘플영상의 선정과 최소거리 분류기에 의해 91.0%의 인식률을 달성하였다.

  • PDF

미세먼지 수치 예측 모델 구현을 위한 데이터마이닝 알고리즘 개발 (Development of Data Mining Algorithm for Implementation of Fine Dust Numerical Prediction Model)

  • 차진욱;김장영
    • 한국정보통신학회논문지
    • /
    • 제22권4호
    • /
    • pp.595-601
    • /
    • 2018
  • 최근 미세먼지 수치가 급격히 상승함에 따라 이에 대한 관심도가 굉장히 높아지고 있다. 미세먼지의 노출은 호흡기 및 심혈관계 질환의 발생과 관련이 있으며, 사망률도 증가시키는 것으로 보고되고 있다. 뿐만 아니라, 산업현장에서도 미세먼지에 대한 피해가 속출한다. 그러나 현대인의 삶에서 미세먼지 노출은 불가피하다. 그러므로 미세먼지를 예측하여, 이에 대한 노출을 최소화하는 것이 건강 및 산업 피해축소에 가장 효율적인 방법일 것이다. 기존의 미세먼지 예측 모델은 농도 수치가 아닌 미세먼지의 농도 범위에 따라 좋음, 보통, 나쁨, 매우 나쁨으로만 나누어 예보하고 있다. 본 논문은 기존의 실제 기상 및 대기 질 데이터를 이용, 기계학습 알고리즘인 Artificial Neural Network (ANN)알고리즘과 K-Nearest Neighbor (K-NN)알고리즘을 상호 응용하여 미세먼지 수치 (PM 10)를 예측하고자 하였다.

Fingerprinting 무선측위 알고리즘을 이용한 영역 기반의 주파수 간섭 관리 기법 (Location-based Frequency Interference Management Scheme Using Fingerprinting Localization Algorithms)

  • 홍애란;김광열;양모찬;오선애;정홍규;신요안
    • 한국통신학회논문지
    • /
    • 제37C권10호
    • /
    • pp.901-908
    • /
    • 2012
  • 미래의 지능형 공장 환경은 관리자가 M2M (Machine-to-Machine) 통신을 이용하여 원격으로 공장 안의 기기들의 동작 상태와 환경을 인지하고 관리하는 것을 목표로 하고 있다. 하지만, 공장 안에서 사용하는 통신 프로토콜인 WLAN (Wireless Local Area Network), ZigBee, Bluetooth 등은 동일한 ISM (Industrial Scientific Medical) 대역을 사용하기 때문에 상호 간섭이 발생하게 된다. 본 논문에서는 Fingerprinting 무선측위 기술을 이용하여 영역 기반으로 주파수를 할당하는 기법을 제안한다. 그리고 일반적인 기법이 가지고 있는 측위 성능의 문제점을 개선하기 위하여, k-NN (Nearest Neighbor) 알고리즘을 적용하고 또한 이를 기반으로 한 새로운 기법도 제안한다. 모의실험 결과를 통해 제안된 무선측위 알고리즘이 다른 기법들보다 측위 성능의 오차가 감소하였으며, 궁극적인 목표로 하고 있는 채널 간섭율 또한 향상되었기에 주파수의 간섭을 보다 효율적으로 관리할 수 있다는 결론을 얻었다. 아울러 지속적인 위치 추정을 통하여 공장 환경 내 안전도 보장할 수 있음을 확인하였다.