무선 방송 방식은 부족한 대역폭의 효율적인 활용과 채널을 듣는 모든 사용자를 지원할 수 있다는 효율성 측면에서 각광받고 있다. 위치기반 서비스 중에서도 효율적인 방송기법을 이용하기 위한 연구 및 가장 기본적인 질의 중 하나인 NN 질의를 효율적으로 수행하기 위한 연구가 이루어져 왔다. 그러나 기존의 연구된 기법들은 NN 탐색 시 하나 이상의 방송주기를 필요로 하여 긴 접근 시간을 가진다는 단점이 있다. 이러한 단점을 모바일 환경에서 비효율적으로 자원을 사용한다는 문제를 발생시킨다. 이에 따라 본 논문에서는 한층 효율적인 자원 사용을 위해서 무선 기기에서 무선 방송 채널을 통해 NN 탐색을 수행할 수 있는 새로운 기법을 제안하고자 한다. 기존의 기법들에 비해서 접근 시간과 튜닝 시간을 줄임으로써 본 논문에서는 효율적으로 자원을 사용하고자 한다. 또한, 실험을 통해 본 논문에서 제안한 기법이 기존의 기법보다. 향상된 성능을 보이는 것을 증명한다.
사용자 모델링을 위해서는 사용자의 성향 및 행위 등의 다양한 정보를 수집하여 분석에 이용한다. 하지만 사용자(인간)로 부터 얻은 데이터는 기계나 환경에서 수집된 데이터 보다 패턴을 찾기 힘들어 모델링하기 어렵다. 그 이유는 사용자는 사용자의 현재 상태와 상황에 따라 다양한 결과를 보이며, 일관성을 유지 하지 않는 경우가 있기 때문이다. 사용자 모델링을 위해서는 분산되어 있는 데이터에서 노이즈를 선별하고 연관성 있는 데이터를 분류할 수 있는 기술이 필요하다. 본 논문은 사용자로 부터 수집된 데이터를 k-NN(Nearest Neighbor) 기법을 이용하여 노이즈를 선별한다. 노이즈가 제거된 데이터는 의사결정나무(Decision Tree)방법을 이용하여 학습하였고, 노이즈가 분류되기 전과 비교 분석 하였다. 실험에서는 홈 인테리어 학습 컨텐츠인 DOLLS-HI를 이용하여 수집된 학습자의 데이터를 이용하였고, 생성된 학습자 모델링의 신뢰도가 높아지는 것을 확인하였다.
위치기반 서비스는 모바일 기기와 무선 통신 기술의 발달로 인해 유비쿼터스 정보 접근의 요구에 따라 많은 관심을 받고 있다. 위치기반서비스 중에서 제한된 지역의 NN 질의는 무선 통신을 통해 그 수요가 급격히 증가하고 있는 절의 중 하나이다. 무선 방송 채널의 효율적 사용과 제한된 자원을 가진 무선 기기에서 제한된 지역의 NN 질의를 효율적으로 수행하기 위해 무선 방송환경에서 적합한 질의 처리 방법을 제안한다. 본 논문에서는 기존의 무선방송환경에서 적합한 기법인 분산 공간 색인 기법 기반한 제한된 지역의 NN 질의 방법을 제안하였으며 본 기법은 다른 기법에 비해 접근 시간과 튜닝시간에 대하여 좋은 성능을 보인다.
본 연구는 강원대학교 학술림을 대상으로 현장조사자료와 Landsat TM-5 위성영상 정보를 이용하여 k-NN기법을 통해 산림바이오매스를 추정하는 것을 목적으로 하였다. 임상 층화 및 최소수평 참조거리(HRA)와 공간필터링의 조건변화에 따른 최적의 참조표본점 개수(k)를 검토하였으며, 이에 따른 산림바이오매스량 추정과 정확도를 비교 분석하였다. 침엽수는 $5{\times}5$ 필터링을 적용한 HRA 4 km와 k=8를 적용하였을 때 최소의 RMSE를 나타냈으며, 편차는 1.8 t/ha으로 과대추정되었다. 한편, 잣나무와 활엽수는 필터링을 적용하지 않은 HRA 4km의 k=8과 HRA 10 km의 k=6을 적용하였을 때 최소의 RMSE가 나타났으며, 편차는 각각 -1.6 t/ha, -5.2 t/ha로 과소추정되었다. k-NN기법에 의하여 추정된 총 바이오매스량은 799천t이며, ha당 평균 산림바이오매스량은 237 t/ha로서 표본점자료를 이용한 추정치보다 약 1 t/ha 높게 나타났다.
최근 사용자에게 자신과 가장 가까운 k 개의 주유소, 레스토랑, 은행 등의 POI(Point Of Interest) 정보를 추천해주는 위치 기반 서비스가 텔레매틱스, ITS(Intelligent Transport Systems), 키오스크(kiosk)등의 어플리케이션에서 필요로 하고 있다. 이를 위해, 보로노이 다이어그램 k-최근접점 탐색 알고리즘이 제안되었다. 이는 보로노이 다이어그램에서 각 POI의 네트워크의 거리를 미리 계산한 파일을 이용하여 k-최근접점 탐색을 수행한다. 그러나 이 알고리즘은 보로노이 다이어그램 확장에 따른 비용 문제를 야기한다. 따라서 본 논문에서는 보로노이 다이어그램의 경계지점마다 각각에 대하여 최소거리 행렬을 생성하는 알고리즘을 제안한다. 또한 k 개의 POI를 탐색하기 위해, 최소거리 행렬을 이용한 k-최근접점 탐색 알고리즘을 제안한다. 제안하는 알고리즘은 미리 계산된 경계 지점 간 최소거리 행렬을 통해 탐색하므로, k-최근 접점 탐색 시 보로노이 다이어그램의 확장비용을 최소화한다. 아울러 기존 연구와의 성능비교를 통해 제안하는 알고리즘이 기존 알고리즘에 비해 검색시간 측면에서 성능이 우수함을 보인다.
단백질의 기능은 그 기능을 발휘하는 세포내의 위치와 밀접한 연관이 있다. 따라서 새로운 단백질의 서열이 밝혀지면 이 단백질의 세포내 위치를 규명하는 것은 생물학적으로 매우 중요한 일이다. 이 논문에서는 단백질의 n-그램과 kNN (k-Nearest Neighbor) 분류기를 이용한 새로운 세포내 위치예측 방법을 다룬다. 이 방법은 입력 단백질 서열과 가장 유사한 가중치를 가지는 k개의 단백질이 가지는 세포내 위치 정보들을 취합하여 입력 단백질의 세포내 위치를 추정한다. 단백질간의 유사도 가중치는 두 단백질서열의 5-그램 자질의 유사도를 비교하여 계산된다. 단백질의 세포내 위치예측 정확도를 검증하기 위해 SWISS-PROT 단백질 데이터베이스로 부터 세포내 위치가 알려진 51,885개의 서열을 추출하여 대용량 테스트 컬렉션을 구축하였으며, 다른 연구자들이 제공하는 또 하나의 소용량 테스트 컬렉션을 실험에 사용하였다. 이 논문에서 사용한 예측방법은 대용량 테스트컬렉션에 대해 약 93%의 정확도를 보여주었으며, 소용량 데스트컬렉션을 이용하여 이전 실험과 비교하였을 때도 이 방법이 다른 시스템에 비해 성능이 우월함을 알 수 있었다.
특징정보를 기반으로 한 유사화상 검색은 화상 데이터베이스에 있어서 중요한 과제의 하나이다. 화상 데이터의 특징정보를 각 화상을 식별하는데 유용한 정보이다. 본 논문에서는 자기조직화 맵기반의 고속 k-NN 탐색 알고리즘을 제안한다. 자기조직화 맵은 학습을 통하여 고차원 특징벡터를 2차원 공간에 맵핑함으로서 위상 특징맵을 생성한다. 위상 특징맵은 입력 데이터의 특징공간의 상호간의 유사성을 가지고 있으며, 각 노드는 노드벡터와 각 노드벡터에 가장 가까운 유사화상이 분류된다. 이러한 자기조직화 맴에 의한 유사화상 분류결과에 대한 k-NN 탐색을 구현하기 위한여, (1) 위상특징 맵에 대한 접근방법, (2) 고속탐색을 위한 pruning strategy의 적용을 실현하였다. 본 연구에서는 실험을 통하여 실제화상으로부터 추출한 색상 특징을 사용하여 제안한 알고리즘의 성능을 평가함으로써 유사화상 검색에 유효한 결과를 얻을 수 있었다.
고유얼굴 방법에 의한 얼굴인식은 얼굴 표정의 변화에 둔감한 유용한 인식기법이나 인식률이 낮아 지속적인 연구가 필요한 실정이다. 본 논문에서는 고유얼굴 특징을 이용한 얼굴인식에 있어서 인식률 개선을 위한 효과적인 방안을 제시한다. 이를 위해 본 연구에서는 고유얼굴 특징에 대해 세 종류의 분류기-단일원형 분류기, 최소거리 분류기, 신경회로망 분류기-를 사용하여 그 성능을 평가하고 분석함으로써 고유얼굴 특징의 분포 특성을 고찰하고, 분류기 및 학습용 샘플 영상의 선정이 인식률 제고에 큰 영향을 미침을 보인다. ORL 얼굴영상 데이터베이스를 사용하여 실험한 결과 최소거리 분류기가 가장 좋은 인식률을 나타내었으며, 학습용 샘플영상의 선정과 최소거리 분류기에 의해 91.0%의 인식률을 달성하였다.
최근 미세먼지 수치가 급격히 상승함에 따라 이에 대한 관심도가 굉장히 높아지고 있다. 미세먼지의 노출은 호흡기 및 심혈관계 질환의 발생과 관련이 있으며, 사망률도 증가시키는 것으로 보고되고 있다. 뿐만 아니라, 산업현장에서도 미세먼지에 대한 피해가 속출한다. 그러나 현대인의 삶에서 미세먼지 노출은 불가피하다. 그러므로 미세먼지를 예측하여, 이에 대한 노출을 최소화하는 것이 건강 및 산업 피해축소에 가장 효율적인 방법일 것이다. 기존의 미세먼지 예측 모델은 농도 수치가 아닌 미세먼지의 농도 범위에 따라 좋음, 보통, 나쁨, 매우 나쁨으로만 나누어 예보하고 있다. 본 논문은 기존의 실제 기상 및 대기 질 데이터를 이용, 기계학습 알고리즘인 Artificial Neural Network (ANN)알고리즘과 K-Nearest Neighbor (K-NN)알고리즘을 상호 응용하여 미세먼지 수치 (PM 10)를 예측하고자 하였다.
미래의 지능형 공장 환경은 관리자가 M2M (Machine-to-Machine) 통신을 이용하여 원격으로 공장 안의 기기들의 동작 상태와 환경을 인지하고 관리하는 것을 목표로 하고 있다. 하지만, 공장 안에서 사용하는 통신 프로토콜인 WLAN (Wireless Local Area Network), ZigBee, Bluetooth 등은 동일한 ISM (Industrial Scientific Medical) 대역을 사용하기 때문에 상호 간섭이 발생하게 된다. 본 논문에서는 Fingerprinting 무선측위 기술을 이용하여 영역 기반으로 주파수를 할당하는 기법을 제안한다. 그리고 일반적인 기법이 가지고 있는 측위 성능의 문제점을 개선하기 위하여, k-NN (Nearest Neighbor) 알고리즘을 적용하고 또한 이를 기반으로 한 새로운 기법도 제안한다. 모의실험 결과를 통해 제안된 무선측위 알고리즘이 다른 기법들보다 측위 성능의 오차가 감소하였으며, 궁극적인 목표로 하고 있는 채널 간섭율 또한 향상되었기에 주파수의 간섭을 보다 효율적으로 관리할 수 있다는 결론을 얻었다. 아울러 지속적인 위치 추정을 통하여 공장 환경 내 안전도 보장할 수 있음을 확인하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.