• Title/Summary/Keyword: Nearest Neighbor (NN)

Search Result 219, Processing Time 0.024 seconds

Malware Detection Method using Opcode and windows API Calls (Opcode와 Windows API를 사용한 멀웨어 탐지)

  • Ahn, Tae-Hyun;Oh, Sang-Jin;Kwon, Young-Man
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.17 no.6
    • /
    • pp.11-17
    • /
    • 2017
  • We proposed malware detection method, which use the feature vector that consist of Opcode(operation code) and Windows API Calls extracted from executable files. And, we implemented our feature vector and measured the performance of it by using Bernoulli Naïve Bayes and K-Nearest Neighbor classifier. In experimental result, when using the K-NN classifier with the proposed method, we obtain 95.21% malware detection accuracy. It was better than existing methods using only either Opcode or Windows API Calls.

SOMk-NN Search Algorithm for Content-Based Retrieval (내용기반 검색을 위한 SOMk-NN탐색 알고리즘)

  • O, Gun-Seok;Kim, Pan-Gu
    • Journal of KIISE:Databases
    • /
    • v.29 no.5
    • /
    • pp.358-366
    • /
    • 2002
  • Feature-based similarity retrieval become an important research issue in image database systems. The features of image data are useful to discrimination of images. In this paper, we propose the high speed k-Nearest Neighbor search algorithm based on Self-Organizing Maps. Self-Organizing Maps(SOM) provides a mapping from high dimensional feature vectors onto a two-dimensional space and generates a topological feature map. A topological feature map preserves the mutual relations (similarities) in feature spaces of input data, and clusters mutually similar feature vectors in a neighboring nodes. Therefore each node of the topological feature map holds a node vector and similar images that is closest to each node vector. We implemented a k-NN search for similar image classification as to (1) access to topological feature map, and (2) apply to pruning strategy of high speed search. We experiment on the performance of our algorithm using color feature vectors extracted from images. Promising results have been obtained in experiments.

사례기반추론 모델의 최근접 이웃 설정을 위한 Similarity Threshold의 사용

  • Lee, Jae-Sik;Lee, Jin-Cheon
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2005.11a
    • /
    • pp.588-594
    • /
    • 2005
  • 사례기반추론(Case-Based Reasoning)은 다양한 예측 문제에 있어서 성공적으로 활용되고 있는 데이터마이닝 기법 중 하나이다. 사례기반추론 시스템의 예측 성능은 예측에 사용되는 최근접이웃(Nearest Neighbor)을 어떻게 설정하느냐에 따라 영향을 받게 된다. 따라서 최근접 이웃을 결정짓는 k 값의 설정은 성공적인 사례기반추론 시스템을 구축하기 위한 중요 요인 중 하나가 된다. 최근접 이웃의 설정에 있어서 대부분의 선행 연구들은 고정된 k 값을 사용하는 사례기반추론 시스템은 k 값을 크게 설정할 경우 최근접 이웃 안에 주어진 오류를 일으킬 수 있으며, k 값이 작게 설정된 경우에는 유사 사례 중 일부만을 예측에 사용하기 때문에 예측 결과의 왜곡을 초래할 수 있다. 본 이웃을 결정함에 있어서 Similarity Threshold를 이용하는 s-NN 방법을 제안하였다. 본 연구의 실험을 위해 UCI(University of california, Irvine) Machine Learning Repository에서 제공하는 두 개의 신용 데이터 셋을 사용하였으며, 실험 결과 s-NN 적용한 CBR 모델이 고정된 k 값을 적용한 전통적인 CBR 모델보다 더 우수한 성능을 보여주었다.

  • PDF

A Method for Continuous k Nearest Neighbor Search With Partial Order (부분순위 연속 k 최근접 객체 탐색 기법)

  • Kim, Jin-Deog
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.1
    • /
    • pp.126-132
    • /
    • 2011
  • In the application areas of LBS(Location Based Service) and ITS(Intelligent Transportation System), continuous k-nearest neighbor query(CkNN) which is defined as a query to find the nearest points of interest to all the points on a given path is widely used. It is necessary to acquire results quickly in the above applications and be applicable to spatial network databases. It is also able to cope successfully with frequent updates of POI objects. This paper proposes a new method to search nearest POIs for moving query objects on the spatial networks. The method produces a set of split points and their corresponding k-POIs as results with partial order among k-POIs. The results obtained from experiments with real dataset show that the proposed method outperforms the existing methods. The proposed method achieves very short processing time(15%) compared with the existing method.

Location Positioning System Based on K-NN for Sensor Networks (센서네트워크를 위한 K-NN 기반의 위치 추정 시스템)

  • Kim, Byoung-Kug;Hong, Won-Gil
    • Journal of Korea Multimedia Society
    • /
    • v.15 no.9
    • /
    • pp.1112-1125
    • /
    • 2012
  • To realize LBS (Location Based Service), typically GPS is mostly used. However, this system can be only used in out-sides. Furthermore, the use of the GPS in sensor networks is not efficient due to the low power consumption. Hence, we propose methods for the location positioning which is runnable at indoor in this paper. The proposed methods elaborate the location positioning system via applying K-NN(K-Nearest Neighbour) Algorithm with its intermediate values based on IEEE 802.15.4 technology; which is mostly used for the sensor networks. Logically the accuracy of the location positioning is proportional to the number of sampling sensor nodes' RSS according to the K-NN. By the way, numerous sampling uses a lot of sensor networks' resources. In order to reduce the number of samplings, we, instead, attempt to use the intermediate values of K-NN's signal boundaries, so that our proposed methods are able to positioning almost two times as accurate as the general ways of K-NN's result.

Load Fidelity Improvement of Piecewise Integrated Composite Beam by Construction Training Data of k-NN Classification Model (k-NN 분류 모델의 학습 데이터 구성에 따른 PIC 보의 하중 충실도 향상에 관한 연구)

  • Ham, Seok Woo;Cheon, Seong S.
    • Composites Research
    • /
    • v.33 no.3
    • /
    • pp.108-114
    • /
    • 2020
  • Piecewise Integrated Composite (PIC) beam is composed of different stacking against loading type depending upon location. The aim of current study is to assign robust stacking sequences against external loading to every corresponding part of the PIC beam based on the value of stress triaxiality at generated reference points using the k-NN (k-Nearest Neighbor) classification, which is one of representative machine learning techniques, in order to excellent superior bending characteristics. The stress triaxiality at reference points is obtained by three-point bending analysis of the Al beam with training data categorizing the type of external loading, i.e., tension, compression or shear. Loading types of each plane of the beam were classified by independent plane scheme as well as total beam scheme. Also, loading fidelities were calibrated for each case with the variation of hyper-parameters. Most effective stacking sequences were mapped into the PIC beam based on the k-NN classification model with the highest loading fidelity. FE analysis result shows the PIC beam has superior external loading resistance and energy absorption compared to conventional beam.

Continuous Trajectory Nearest Neighbor Query using the Direction Information of Moving Objects (이동객체 방향정보를 이용한 연속궤적최근접질의)

  • Jo Jin-Yeon;Lee Eun-Bae
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2006.05a
    • /
    • pp.59-62
    • /
    • 2006
  • 최근접 질의 (NN: Nearest Neighbor Query)는 질의 요청자와 가장 가까운 곳에 위치한 대상 객체를 검색하기 위한 질의로서, 이 질의 방법을 실세계 이동 객체에 바로 적용하였을 경우, 실세계의 도로정보를 고려하지 않아 적절한 결과를 제공하지 못한다. 예를 들어, 사용자의 이동 방향과는 반대 방향에 위치한 객체가 질의 결과로 반환 될 경우, 사용자가 검색된 객체에 접근하기 위한 시간과 비용이 증가하는 문제가 발생한다. 또한 질의 객체와 대상 객체가 모두 이동할 경우에는 일정시점에서 질의한 결과는 조금만 시간이 지나면 유효하지 않게 된다. 이러한 문제를 해결하기 위하여 질의 객체와 데이터 객체가 모두 이동 객체인 경우에 적합하게 사용될 수 있도록 이동체의 궤적 정보를 방향정보 가중치로 환산한 근접 질의처리 방법을 제안한다.

  • PDF

Comparison of Forest Growing Stock Estimates by Distance-Weighting and Stratification in k-Nearest Neighbor Technique (거리 가중치와 층화를 이용한 최근린기반 임목축적 추정치의 정확도 비교)

  • Yim, Jong Su;Yoo, Byung Oh;Shin, Man Yong
    • Journal of Korean Society of Forest Science
    • /
    • v.101 no.3
    • /
    • pp.374-380
    • /
    • 2012
  • The k-Nearest Neighbor (kNN) technique is popularly applied to assess forest resources at the county level and to provide its spatial information by combining large area forest inventory data and remote sensing data. In this study, two approaches such as distance-weighting and stratification of training dataset, were compared to improve kNN-based forest growing stock estimates. When compared with five distance weights (0 to 2 by 0.5), the accuracy of kNN-based estimates was very similar ranged ${\pm}0.6m^3/ha$ in mean deviation. The training dataset were stratified by horizontal reference area (HRA) and forest cover type, which were applied by separately and combined. Even though the accuracy of estimates by combining forest cover type and HRA- 100 km was slightly improved, that by forest cover type was more efficient with sufficient number of training data. The mean of forest growing stock based kNN with HRA-100 and stratification by forest cover type when k=7 were somewhat underestimated ($5m^3/ha$) compared to statistical yearbook of forestry at 2011.

The Comparison of Neural Network and k-NN Algorithm for News Article Classification (신경망 또는 k-NN에 의한 신문 기사 분류와 그의 성능 비교)

  • 조태호
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 1998.10c
    • /
    • pp.363-365
    • /
    • 1998
  • 텍스트 마이닝(Text Mining)이란 텍스트형태의 문서들의 패턴 또는 관계를 추출하여 사용자가 원하는 새로운 정보를 가공하거나 기존의 정보를 변형하는 과정을 말한다. 텍스트 마이닝의 기능에는 문서 범주화(Document Categorization), 문서 군집화(Document Clustering), 그리고 문서 요약(Document Summarization)이 이에 해당된다. 문서 범주화란 문서에게 사전에 정의한 범주를 부여하는 과정을 말하고, 문서 군집화란 문서들을 계층적 구조로 형성하는 과정을 말하고, 문서 요약이란 문서의 전체 내용을 대표할 수 있는 내용의 일부만을 추출하는 과정을 말한다. 이 논문에서는 문서 범주화만을 다룰 것이며 그 대상으로는 신문기사로 설정하였다. 그의 범주는 4가지로 정치, 경제, 스포츠, 그리고 정보통신으로 설정하였다. 문서 범주화는 문서 분류(Document Classification)라고도 하며 문서에 범주를 자동으로 부여하여 기존에 인위적으로 부여함으로써 소요되는 시간과 비용을 절감하는 것이 목적이다. 문서 범주화에 대하여 k-NN(k-Nearest Neighbor)와 신경망을 이용하였으며, 신경망을 이용한 경우가 k-NN을 이용한 경우보다 성능이 우수하였다.

  • PDF

mkNN Query Processing Method based on $R^m$-tree for Spatial Objects with m-types (m-유형 공간객체를 위한 $R^m$-tree기반의 mk-최근접질의 처리기법)

  • Jang, Dong-Jue;An, Soo-Yeon;Jung, Sung-Won
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2011.06c
    • /
    • pp.45-48
    • /
    • 2011
  • 본 논문에서는 다양한 타입의 위치기반 데이터들을 하나의 R-tree로 통합합 $R^m$-tree의 구조와 이 $R^m$-tree를 이용하여 질의 포인트로부터 각 타입에서 k개의 가까운 위치기반 데이터를 찾는 mkNN(multi-type k nearest neighbor) 질의 처리기법을 제안하였다. 특히, 다양한 타입의 위치기반 데이터들을 각 타입별로 독립된 R-tree로 유지하지 않고, 하나의 $R^m$-tree로 통합하여 관리함으로써 mkNN 질의 처리시 같은 레벨의 공간의 반복탐색을 줄일 수 있도록 고안하였다. 그리고 각 타입 t에 대한 위치데이터를 관리하는 부가적인 타입정보 자료구조로서 위치정보를 담은 TMBR, 데이터 개수정보를 담은 $I_t$-entry를 새로이 고안하여 mkNN질의 처리시 효율적인 휠터링(filtering)과 검색과정이 이루어지도록 하였다.