The Journal of the Institute of Internet, Broadcasting and Communication
/
v.17
no.6
/
pp.11-17
/
2017
We proposed malware detection method, which use the feature vector that consist of Opcode(operation code) and Windows API Calls extracted from executable files. And, we implemented our feature vector and measured the performance of it by using Bernoulli Naïve Bayes and K-Nearest Neighbor classifier. In experimental result, when using the K-NN classifier with the proposed method, we obtain 95.21% malware detection accuracy. It was better than existing methods using only either Opcode or Windows API Calls.
Feature-based similarity retrieval become an important research issue in image database systems. The features of image data are useful to discrimination of images. In this paper, we propose the high speed k-Nearest Neighbor search algorithm based on Self-Organizing Maps. Self-Organizing Maps(SOM) provides a mapping from high dimensional feature vectors onto a two-dimensional space and generates a topological feature map. A topological feature map preserves the mutual relations (similarities) in feature spaces of input data, and clusters mutually similar feature vectors in a neighboring nodes. Therefore each node of the topological feature map holds a node vector and similar images that is closest to each node vector. We implemented a k-NN search for similar image classification as to (1) access to topological feature map, and (2) apply to pruning strategy of high speed search. We experiment on the performance of our algorithm using color feature vectors extracted from images. Promising results have been obtained in experiments.
Proceedings of the Korea Inteligent Information System Society Conference
/
2005.11a
/
pp.588-594
/
2005
사례기반추론(Case-Based Reasoning)은 다양한 예측 문제에 있어서 성공적으로 활용되고 있는 데이터마이닝 기법 중 하나이다. 사례기반추론 시스템의 예측 성능은 예측에 사용되는 최근접이웃(Nearest Neighbor)을 어떻게 설정하느냐에 따라 영향을 받게 된다. 따라서 최근접 이웃을 결정짓는 k 값의 설정은 성공적인 사례기반추론 시스템을 구축하기 위한 중요 요인 중 하나가 된다. 최근접 이웃의 설정에 있어서 대부분의 선행 연구들은 고정된 k 값을 사용하는 사례기반추론 시스템은 k 값을 크게 설정할 경우 최근접 이웃 안에 주어진 오류를 일으킬 수 있으며, k 값이 작게 설정된 경우에는 유사 사례 중 일부만을 예측에 사용하기 때문에 예측 결과의 왜곡을 초래할 수 있다. 본 이웃을 결정함에 있어서 Similarity Threshold를 이용하는 s-NN 방법을 제안하였다. 본 연구의 실험을 위해 UCI(University of california, Irvine) Machine Learning Repository에서 제공하는 두 개의 신용 데이터 셋을 사용하였으며, 실험 결과 s-NN 적용한 CBR 모델이 고정된 k 값을 적용한 전통적인 CBR 모델보다 더 우수한 성능을 보여주었다.
Journal of the Korea Institute of Information and Communication Engineering
/
v.15
no.1
/
pp.126-132
/
2011
In the application areas of LBS(Location Based Service) and ITS(Intelligent Transportation System), continuous k-nearest neighbor query(CkNN) which is defined as a query to find the nearest points of interest to all the points on a given path is widely used. It is necessary to acquire results quickly in the above applications and be applicable to spatial network databases. It is also able to cope successfully with frequent updates of POI objects. This paper proposes a new method to search nearest POIs for moving query objects on the spatial networks. The method produces a set of split points and their corresponding k-POIs as results with partial order among k-POIs. The results obtained from experiments with real dataset show that the proposed method outperforms the existing methods. The proposed method achieves very short processing time(15%) compared with the existing method.
To realize LBS (Location Based Service), typically GPS is mostly used. However, this system can be only used in out-sides. Furthermore, the use of the GPS in sensor networks is not efficient due to the low power consumption. Hence, we propose methods for the location positioning which is runnable at indoor in this paper. The proposed methods elaborate the location positioning system via applying K-NN(K-Nearest Neighbour) Algorithm with its intermediate values based on IEEE 802.15.4 technology; which is mostly used for the sensor networks. Logically the accuracy of the location positioning is proportional to the number of sampling sensor nodes' RSS according to the K-NN. By the way, numerous sampling uses a lot of sensor networks' resources. In order to reduce the number of samplings, we, instead, attempt to use the intermediate values of K-NN's signal boundaries, so that our proposed methods are able to positioning almost two times as accurate as the general ways of K-NN's result.
Piecewise Integrated Composite (PIC) beam is composed of different stacking against loading type depending upon location. The aim of current study is to assign robust stacking sequences against external loading to every corresponding part of the PIC beam based on the value of stress triaxiality at generated reference points using the k-NN (k-Nearest Neighbor) classification, which is one of representative machine learning techniques, in order to excellent superior bending characteristics. The stress triaxiality at reference points is obtained by three-point bending analysis of the Al beam with training data categorizing the type of external loading, i.e., tension, compression or shear. Loading types of each plane of the beam were classified by independent plane scheme as well as total beam scheme. Also, loading fidelities were calibrated for each case with the variation of hyper-parameters. Most effective stacking sequences were mapped into the PIC beam based on the k-NN classification model with the highest loading fidelity. FE analysis result shows the PIC beam has superior external loading resistance and energy absorption compared to conventional beam.
Proceedings of the Korea Information Processing Society Conference
/
2006.05a
/
pp.59-62
/
2006
최근접 질의 (NN: Nearest Neighbor Query)는 질의 요청자와 가장 가까운 곳에 위치한 대상 객체를 검색하기 위한 질의로서, 이 질의 방법을 실세계 이동 객체에 바로 적용하였을 경우, 실세계의 도로정보를 고려하지 않아 적절한 결과를 제공하지 못한다. 예를 들어, 사용자의 이동 방향과는 반대 방향에 위치한 객체가 질의 결과로 반환 될 경우, 사용자가 검색된 객체에 접근하기 위한 시간과 비용이 증가하는 문제가 발생한다. 또한 질의 객체와 대상 객체가 모두 이동할 경우에는 일정시점에서 질의한 결과는 조금만 시간이 지나면 유효하지 않게 된다. 이러한 문제를 해결하기 위하여 질의 객체와 데이터 객체가 모두 이동 객체인 경우에 적합하게 사용될 수 있도록 이동체의 궤적 정보를 방향정보 가중치로 환산한 근접 질의처리 방법을 제안한다.
The k-Nearest Neighbor (kNN) technique is popularly applied to assess forest resources at the county level and to provide its spatial information by combining large area forest inventory data and remote sensing data. In this study, two approaches such as distance-weighting and stratification of training dataset, were compared to improve kNN-based forest growing stock estimates. When compared with five distance weights (0 to 2 by 0.5), the accuracy of kNN-based estimates was very similar ranged ${\pm}0.6m^3/ha$ in mean deviation. The training dataset were stratified by horizontal reference area (HRA) and forest cover type, which were applied by separately and combined. Even though the accuracy of estimates by combining forest cover type and HRA- 100 km was slightly improved, that by forest cover type was more efficient with sufficient number of training data. The mean of forest growing stock based kNN with HRA-100 and stratification by forest cover type when k=7 were somewhat underestimated ($5m^3/ha$) compared to statistical yearbook of forestry at 2011.
Proceedings of the Korean Information Science Society Conference
/
1998.10c
/
pp.363-365
/
1998
텍스트 마이닝(Text Mining)이란 텍스트형태의 문서들의 패턴 또는 관계를 추출하여 사용자가 원하는 새로운 정보를 가공하거나 기존의 정보를 변형하는 과정을 말한다. 텍스트 마이닝의 기능에는 문서 범주화(Document Categorization), 문서 군집화(Document Clustering), 그리고 문서 요약(Document Summarization)이 이에 해당된다. 문서 범주화란 문서에게 사전에 정의한 범주를 부여하는 과정을 말하고, 문서 군집화란 문서들을 계층적 구조로 형성하는 과정을 말하고, 문서 요약이란 문서의 전체 내용을 대표할 수 있는 내용의 일부만을 추출하는 과정을 말한다. 이 논문에서는 문서 범주화만을 다룰 것이며 그 대상으로는 신문기사로 설정하였다. 그의 범주는 4가지로 정치, 경제, 스포츠, 그리고 정보통신으로 설정하였다. 문서 범주화는 문서 분류(Document Classification)라고도 하며 문서에 범주를 자동으로 부여하여 기존에 인위적으로 부여함으로써 소요되는 시간과 비용을 절감하는 것이 목적이다. 문서 범주화에 대하여 k-NN(k-Nearest Neighbor)와 신경망을 이용하였으며, 신경망을 이용한 경우가 k-NN을 이용한 경우보다 성능이 우수하였다.
Proceedings of the Korean Information Science Society Conference
/
2011.06c
/
pp.45-48
/
2011
본 논문에서는 다양한 타입의 위치기반 데이터들을 하나의 R-tree로 통합합 $R^m$-tree의 구조와 이 $R^m$-tree를 이용하여 질의 포인트로부터 각 타입에서 k개의 가까운 위치기반 데이터를 찾는 mkNN(multi-type k nearest neighbor) 질의 처리기법을 제안하였다. 특히, 다양한 타입의 위치기반 데이터들을 각 타입별로 독립된 R-tree로 유지하지 않고, 하나의 $R^m$-tree로 통합하여 관리함으로써 mkNN 질의 처리시 같은 레벨의 공간의 반복탐색을 줄일 수 있도록 고안하였다. 그리고 각 타입 t에 대한 위치데이터를 관리하는 부가적인 타입정보 자료구조로서 위치정보를 담은 TMBR, 데이터 개수정보를 담은 $I_t$-entry를 새로이 고안하여 mkNN질의 처리시 효율적인 휠터링(filtering)과 검색과정이 이루어지도록 하였다.
이메일무단수집거부
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.