• Title/Summary/Keyword: Near-surface disposal facility

Search Result 36, Processing Time 0.031 seconds

Safety Assessment for LILW Near-Surface Disposal Facility Using the IAEA Reference Model and MASCOT Program (IAEA의 기준모델과 MASCOT 프로그램을 이용한 중저준위방사성폐기물 천층처분시설 안전성평가)

  • Kim, Hyun-Joo;Park, Joo-Wan;Kim, Chang-Lak
    • Journal of Radiation Protection and Research
    • /
    • v.27 no.2
    • /
    • pp.111-120
    • /
    • 2002
  • A reference scenario of vault safety case prepared by the IAEA for the near-surface disposal facility of low-and informed]ate-level radioactive wastes is assessed with the MASCOT program. The appropriate conceptual models for the MASCOT implementation is developed. An assessment of groundwater pathway through a drinking well as a geosphere-biosphere interface is performed first. then biosphere pathway is analysed to estimate the radiological consequences of the disposed radionuclides based on compartment modeling approach. The validity of conceptual modeling for the reference scenario is investigated where possible comparing to the results generated by the other assessment. The result of this study shows that the typical conceptual model for groundwater pathway represented by the compartment model ran be satisfactorily used for safety assessment of the entire disposal system in a cons]stent way. It is also shown that safety assessment of a disposal facility considering complex and various pathways would be possible by the MASCOT program.

Development of Two-Dimensional Near-field Integrated Performance Assessment Model for Near-surface LILW Disposal (중·저준위 방사성폐기물 천층처분시설 근계영역의 2차원 통합성능평가 모델 개발)

  • Bang, Je Heon;Park, Joo-Wan;Jung, Kang Il
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.12 no.4
    • /
    • pp.315-334
    • /
    • 2014
  • Wolsong Low- and Intermediate-level radioactive waste (LILW) disposal center has two different types of disposal facilities and interacts with the neighboring Wolsong nuclear power plant. These situations impose a high level of complexity which requires in-depth understanding of phenomena in the safety assessment of the disposal facility. In this context, multidimensional radionuclide transport model and hydraulic performance assessment model should be developed to identify more realistic performance of the complex system and reduce unnecessary conservatism in the conventional performance assessment models developed for the $1^{st}$ stage underground disposal. In addition, the advanced performance assessment model is required to calculate many cases to treat uncertainties or study parameter importance. To fulfill the requirements, this study introduces the development of two-dimensional integrated near-field performance assessment model combining near-field hydraulic performance assessment model and radionuclide transport model for the $2^{nd}$ stage near-surface disposal. The hydraulic and radionuclide transport behaviors were evaluated by PORFLOW and GoldSim. GoldSim radionuclide transport model was verified through benchmark calculations with PORFLOW radionuclide transport model. GoldSim model was shown to be computationally efficient and provided the better understanding of the radionuclide transport behavior than conventional model.

Study on Institutional Control Period for Near Surface Disposal Facilities Considering Inadvertent Intruder Scenarios

  • Yoon, Jeong-Hyoun;Kim, Chang-Lak;Park, Heui-Joo;Park, Joo-Wan;Byoung moo Kang;Gyuseong Cho
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1998.05b
    • /
    • pp.441-446
    • /
    • 1998
  • As for safety assessment of a radioactive waste disposal facility, radiation dose to inadvertent intruders is evaluated according to scenarios related to intruder's postulated activities at the disposal site after the end of Institutional Control Period(ICP). Simple trench and Below Ground Vault(BGV) are considered for this study as alternative disposal systems, and different scenarios are applied to each disposal type. The results show that 300 years of ICP is needed for simple trench and 100 years for BGV. Even for BGV, concentration of long-lived radioactive nuclides should be limited considering degradation of BGV after 300 years.

  • PDF

A natural analog study on the cover-layer performance for near-surface LILW disposal by considering the tomb of historical age (역사시대 고분을 이용한 중저준위 방사성폐기물의 천층처분 덮개성능 자연유사연구)

  • Park Jin-Beak;Park Joo Wan;Kim Chang-Lak;Yang Si Eun;Lee Sun Bok
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.3 no.4
    • /
    • pp.279-291
    • /
    • 2005
  • To support the design concept and the performance assessment of the cover system for low- and intermediate-level radioactive waste(LILW) disposal facility, a pioneering study is conducted for the tomb of historical age. Research status of the art are investigated and the characteristics of tomb cover are summarized based on the preservation status of historical remains. On-site soil samples are prepared and their unsaturated hydraulic conductivities are measured by an one-step outflow method. Visiting the excavation site of historical tomb and communication with Korean archeological society are required for the further understanding and for the extension to the radioactive waste disposal research.

  • PDF

Performance Assessment of Low- and Intermediate-Level Radioactive Waste Disposal Facility in Korea by Using Complementary Indicator: Case Study with Radionuclide Flux (보조지표를 활용한 중·저준위 처분시설 성능평가: 방사성 핵종 플럭스 사례연구)

  • Jung, Kang-Il;Jeong, Mi-Seon;Park, Jin Beak
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.13 no.1
    • /
    • pp.73-86
    • /
    • 2015
  • The use of complimentary indicators, other than radiation dose and risk, to assess the safety of radioactive waste disposal has been discussed in a number of publications for providing the reasonable assurance of disposal safety and convincing the public audience. In this study, the radionuclide flux was selected as performance indicator to appraise the performance of engineered barriers and natural barrier in the Wolsong low- and intermediate-level waste disposal facility. Radionuclide flux showing the retention capability by each compartment of the disposal system is independent of assumptions in biosphere model and exposure pathways. The scenario considered as the normal scenario of disposal facility has been divided into intact or degraded silo concrete conditions. In the intact silo concrete, the radionuclide flux has been assessed with respect to the radionuclide retardation performance of each engineered barrier. In the degraded silo concrete, the radionuclide flux has been explored based on the performance degradation of engineered barriers and the relative significance of natural barrier quantitatively. The results can be used to optimally design the near-surface disposal facility being planned as the second project phase. In the future, additional complimentary indicators will be employed for strengthening the safety case for improving the public acceptance of low- and intermediate-level waste disposal facility.

Development of a Quality Assurance Safety Assessment Database for Near Surface Radioactive Waste Disposal

  • Park J.W.;Kim C.L.;Park J.B.;Lee E.Y.;Lee Y.M.;Kang C.H.;Zhou W.;Kozak M.W.
    • Nuclear Engineering and Technology
    • /
    • v.35 no.6
    • /
    • pp.556-565
    • /
    • 2003
  • A quality assurance safety assessment database, called QUARK (QUality Assurance Program for Radioactive Waste Management in Korea), has been developed to manage both analysis information and parameter database for safety assessment of low- and intermediate-level radioactive waste (LILW) disposal facility in Korea. QUARK is such a tool that serves QA purposes for managing safety assessment information properly and securely. In QUARK, the information is organized and linked to maximize the integrity of information and traceability. QUARK provides guidance to conduct safety assessment analysis, from scenario generation to result analysis, and provides a window to inspect and trace previous safety assessment analysis and parameter values. QUARK also provides default database for safety assessment staff who construct input data files using SAGE(Safety Assessment Groundwater Evaluation), a safety assessment computer code.

Improvement of Safety Approach for Accidents During Operation of LILW Disposal Facility : Application for Operational Safety Assessment of the Near-surface LILW Disposal Facility in Korea (중·저준위 방사성폐기물 처분시설의 운영 중 사고에 대한 평가체계 개선 : 한국의 중·저준위 방사성폐기물 표층처분시설의 운영 중 안전성평가 적용사례)

  • Kim, Hyun-Joo;Kim, Minseong;Park, Jin Beak
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.15 no.2
    • /
    • pp.161-172
    • /
    • 2017
  • To evaluate radiological impact from the operation of a low- and intermediate-level radioactive waste disposal facility, a logical presentation and explanation of expected accidental scenarios is essential to the stakeholders of the disposal facility. The logical assessment platform and procedure, including analysis of the safety function of disposal components, operational hazard analysis, operational risk analysis, and preparedness of remedial measures for operational safety, are improved in this study. In the operational risk analysis, both design measures and management measures are suggested to make it possible to connect among design, operation, and safety assessment within the same assessment platform. For the preparedness of logical assessment procedure, classification logic of an operational accident is suggested based on the probability of occurrence and consequences of assessment results. The improved assessment platform and procedure are applied to an operational accident analysis of the Korean low- and intermediate-level radioactive waste disposal facility and partly presented in this paper.