• Title/Summary/Keyword: Near-infrared lasers

Search Result 28, Processing Time 0.04 seconds

Femtosecond Micromachining Applications for Optical Devices

  • Sohn, Ik-Bu;Lee, Man-Seop;Woo, Jeong-Sik
    • Journal of the Optical Society of Korea
    • /
    • v.8 no.3
    • /
    • pp.127-131
    • /
    • 2004
  • This paper investigates applications of femtosecond lasers for the micromachining of transparent materials and fabrication of optical devices. We show commercial micromachining examples of transparent materials which have been fabricated for various applications. Near infrared femtosecond laser processing is an attractive method to fabricate three-dimensional optical waveguides into various transparent materials. Focused femtosecond laser pulses induce a permanent refractive-index change only near the focal point. We also demonstrate a Y coupler with the splitting ratio of 1:1 written by femtosecond laser pulses into a fused silica glass. The minimum propagation loss of 0.8 ㏈/㎝ awl the refractive-index change of 0.006-0.01 at the wavelength of 1550 ㎚ were achieved by optimization of the laser fluence.

The Effect of an Optical Clearing Agent on Tissue Prior to 1064-nm Laser Therapy

  • Youn, Jong-In
    • Medical Lasers
    • /
    • v.10 no.3
    • /
    • pp.146-152
    • /
    • 2021
  • Background and Objectives Although lasers have been widely applied in tissue treatment, the light penetration depth in tissues is limited by the tissue turbidity and affected by its absorption and scattering characteristics. This study investigated the effect of using an optical clearing agent (OCA) on tissue to improve the therapeutic effect of 1064 nm wavelength laser light by reducing the heat generated on the skin surface and increasing the penetration depth. Materials and Methods A diode laser (λ = 1064 nm) was applied to a porcine specimen with and without OCA to investigate the penetration depth of the laser light and temperature distribution. A numerical simulation using the finite element method was performed to investigate the temperature distribution of the specimen compared to ex-vivo experiments using a thermocouple and double-integrating sphere to measure the temperature profile and optical properties of the tissue, respectively. Results Simulation results showed a decrease in tissue surface temperature with increased penetration depth when the OCA was applied. Furthermore, both absorption and scattering coefficients decreased with the application of OCA. In ex-vivo experiments, temperatures decreased for the tissue surface and the fat layer with the OCA, but not for the muscle layer. Conclusion The use of an OCA may be helpful for reducing surface heat generation and enhance the light penetration depth in various near-infrared laser treatments.

Effect of Photothermal Therapy with Indocyanine Green in Multispecies Biofilm (Indocyanine Green을 이용한 광열 치료의 다종 우식원성 바이오필름에 대한 효과)

  • Kim, Myunghwan;Park, Howon;Lee, Juhyun;Seo, Hyunwoo;Lee, Siyoung
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.48 no.1
    • /
    • pp.21-30
    • /
    • 2021
  • The purpose of this study is to investigate the antibacterial effects of indocyanine green (ICG) and near-infrared diode lasers on multispecies biofilms. Multispecies biofilms of Streptococcus mutans, Lactobacillus casei and Candida albicans were treated with different irradiation time using photosensitizer ICG and 808 nm near-infrared diode laser. Colony forming unit (CFU) was measured, and qualitative evaluation of biofilm was performed with confocal laser scanning microscopy (CLSM). Temperature measurement was conducted to evaluate photothermal effect. In the groups using ICG and diode laser, reduction in CFU was statistically significant, but the difference in antibacterial effect on L. casei and C. albicans with irradiation time was not significant, and similar results were confirmed with CLSM. Groups with ICG and diode laser showed higher temperature elevation than groups without ICG, and results of measured temperature were similar to the range of hyperthermia. In conclusion, ICG and near-infrared diode laser showed antibacterial effects on multispecies biofilms, but studies on protocol are necessary for clinical application.

Quasi-continuous-wave Yb-doped Fiber Lasers with 1.5 kW Peak Power (첨두 출력 1.5 kW급 준연속 이터븀 첨가 광섬유 레이저)

  • Jeon, Minjee;Jung, Yeji;Kim, Jiwon;Jeong, Hoon
    • Korean Journal of Optics and Photonics
    • /
    • v.27 no.3
    • /
    • pp.95-100
    • /
    • 2016
  • High-power quasi-continuous-wave (qcw) operation in Yb-doped double-clad fiber lasers with near-diffraction-limited quality of the output beam is reported. Based on numerical simulation, we built a simple, all-fiberized Yb fiber laser, and a fiber-based master-oscillator power amplifier (MOPA). Both laser systems have successfully produced qcw output with average power greater than 150 W at 1080 nm and 10 ms pulse duration at 10 Hz repetition rate, corresponding to a peak power greater than 1.5 kW for 205 W of pump power at 976 nm. Laser performance, including beam quality and slope efficiency, was characterized in both configurations. Prospects for power scaling and applications are discussed.

Oxide Glasses for Holographic Data Storage

  • Poirier, Gael;Nalin, Marcelo;Ribeiro, Sidney J.L;Messaddeq, Younes
    • Ceramist
    • /
    • v.10 no.3
    • /
    • pp.86-90
    • /
    • 2007
  • Novel photochromic oxide glasses are presented in this section. These glasses are based on phosphate formers containing both tungsten and antimony atoms. Exposure to visible continuous or pulsed laser beam results in an intense photochromic effect witch is shown to occur in the volume of the glass and results in a broad absorption band in the visible and near infrared. This effect was not identified to be related with a structural change and is assumed to be entirely electronic. A change in the absorption coefficient is observed in function of tungsten content, exposure time and increases with beam power. These glasses have been investigated regarding the possibility of holographic data storage using visible lasers sources. Changes in both refractive index and the absorption coefficient were measured using a holographic setup. The modulation of the optical constants is reversible by heat treatment.

  • PDF

Decade Long Survey of Low-level Laser Therapy/Photobiomodulation (LLLT/PBM) Therapy for Oral Mucositis Treatment

  • Ryu, Hyun Seok;Abueva, Celine;Chung, Phil-Sang;Woo, Seung Hoon
    • Medical Lasers
    • /
    • v.10 no.3
    • /
    • pp.138-145
    • /
    • 2021
  • Low-level laser therapy or photobiomodulation (LLLT/PBM) therapy has been widely applied to enhance and accelerate the recovery of oral mucositis. This study investigates the documented effect of LLLT on oral mucositis caused by chemotherapy. This review appraises 6 animal studies and 12 clinical studies published in the Pubmed database during the past 10 years, related to the application of LLLT for the treatment of mucositis. Despite varied parameters and diverse conditions, the assessed articles indicate that application of LLLT on oral mucositis using near-infrared wavelengths is prophylactic, reduces pain, and enables a rapid recovery. Various combined treatments were also identified among the published papers, which further establishes the efficacy of LLLT as a viable treatment.

Photobiomodulation Therapy in Recovery of Peripheral Facial Nerve Damage

  • Choi, Ji Eun
    • Medical Lasers
    • /
    • v.9 no.2
    • /
    • pp.89-94
    • /
    • 2020
  • Photobiomodulation (PBM) therapy has been investigated to enhance and accelerate the recovery of injured peripheral nerves. Based on the wide range of benefits of PBM therapy and its clinical relevance, this study reviewed the efficacy of PBM in injured facial nerves. The search was performed in the PubMed database to find relevant articles published over the last 10 years. Four animal studies, two randomized controlled studies, one case series, and five case reports were reviewed. Despite the various parameters, functional analysis showed that PBM therapy using near-infrared irradiation has beneficial effects on the recovery of the acute phase of the damaged facial nerve, especially when related to faster functional improvement. There were no reported adverse effects of PBM therapy.

Effect of the low level light irradiation to NTacSam:SD tissue cell culture (NTacSam:SD의 조직세포 배양에 저출력 광원의 효과)

  • Kim, Tae-Gon;Kim, Toung-Pyo;Park, No-Bong;Lee, Ho-Sic;Park, Yong-Pil;Cheon, Min-Woo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.423-423
    • /
    • 2009
  • Currently, lasers are one of the most popular light sources in use for medical treatment. Many studies on low power lasers are being done in cell culture or through animal tests and most report different findings, making it difficult to verify their true effects. There are shifts in trends of studies from laser and LED that are expensive and generate heat problem to LED that are economically effective and safe. Its near infrared rays can penetrate deep into skin or muscle, up to 23 cm, without causing thermal damage or impairing neighboring tissues. This study verified the performance and effectiveness of an LED irradiator that was designed to emit similar wavelengths to that of a laser and thus could be used instead of a low level laser therapy in experiments on animals. And then, each experiment was performed to irradiation group and non-irradiation group for NTacSam:SD tissue cells. MIT assay method was chosen to verify the cell increase of two groups and the effect of irradiation on cell proliferation was examined by measuring 590nm transmittance of ELISA reader. As a result, the cell increase of NTacSam:SD tissue cells was verified in irradiation group as compared to non-irradiation group. The fact that specific wavelength irradiation has an effect on cell vitality and proliferation is known through this study.

  • PDF

A Review of SERS for Biomaterials Analysis Using Metal Nanoparticles (바이오 물질 분석을 위한 금속 나노입자를 이용한 SERS 분석 연구동향)

  • Jang, Eue-Soon
    • Ceramist
    • /
    • v.22 no.3
    • /
    • pp.281-300
    • /
    • 2019
  • Surface enhanced Raman scattering (SERS) was first discovered in 1974 by an unexpected Raman signal increase from Pyridine adsorbed on rough Ag electrode surfaces by the M. Fleishmann group. M. Moskovits group suggested that this phenomenon could be caused by surface plasmon resonance (SPR), which is a collective oscillation of free electrons at the surface of metal nanostructures by an external light source. After about 40 years, the SERS study has attracted great attention as a biomolecule analysis technology, and more than 2500 new papers and 500 review papers related to SERS topic have been published each year in recently. The advantages of biomaterials analysis using SERS are as follows; ① Molecular level analysis is possible based on unique fingerprint information of biomolecule, ② There is no photo-bleaching effect of the Raman reporters, allowing long-term monitoring of biomaterials compared to fluorescence microscopy, ③ SERS peak bandwidth is approximately 10 to 100 times narrower than fluorescence emission from organic phosphor or quantum dot, resulting in higher analysis accuracy, ④ Single excitation wavelength allows analysis of various biomaterials, ⑤ By utilizing near-infrared (NIR) SERS-activated nanostructures and NIR excitation lasers, auto-fluorescence noise in the visible wavelength range can be avoided from in vivo experiment and light damage in living cells can be minimized compared to visible lasers, ⑥ The weak Raman signal of the water molecule makes it easy to analyze biomaterials in aqueous solutions. For this reason, SERS is attracting attention as a next-generation non-invasive medical diagnostic device as well as substance analysis. In this review, the principles of SERS and various biomaterial analysis principles using SERS analysis will be introduced through recent research papers.

The ice features of Very Low Luminosity Objects (VeLLOs): Unveiling their episodic accretion history through the spectroscopic observation of AKARI IRC

  • Kim, Jaeyeong;Lee, Jeong-Eun;Aikawa, Yuri;Kim, Il-Seok;Lee, Ho-Gyu;Jeong, Woong-Seob;Noble, Jennifer A.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.43 no.1
    • /
    • pp.45.3-46
    • /
    • 2018
  • Although mass accretion from the disk to the central protostar is a key process of low mass star formation, the accretion mechanism is still poorly understood. To investigate "episodic accretion", which has been suggested as an accretion mechanism in low mass star formation, we have carried out near-infrared spectroscopic observations of three very low-luminosity objects (VeLLOs) and one background source, using InfraRed Camera onboard the AKARI space telescope. The ice absorption features of $H_2O$, $CO_2$, and CO were detected around the wavelengths of 3.0, 4.26, and $4.67{\mu}m$, respectively. In addition, we revealed the XCN ice feature, which is attributed to high energy UV photons produced by the episodic burst accretion. The comparisons of the ice abundances of our targets with those of other YSOs observed previously with AKARI IRC imply that the three VeLLOs had experienced burst accretions although they are now in a very quiescent phase.

  • PDF