• Title/Summary/Keyword: Near-inertial waves

Search Result 9, Processing Time 0.024 seconds

Observation of Semi-diurnal Internal Tides and Near-inertial Waves at the Shelf Break of the East China Sea

  • Park, Jae-Hun;Lie, Heung-Jae;Guo, Binghuo
    • Ocean and Polar Research
    • /
    • v.33 no.4
    • /
    • pp.409-419
    • /
    • 2011
  • Semi-diurnal internal tides and near-inertial waves are investigated using moored current meter measurements at four sites along the shelf break of the East China Sea during August 1987 and May-June 1988. Each mooring is equipped with four current meters spanning from near surface to near bottom. Spectral analyses of all current data reveal dominant spectra at the semi-diurnal frequency band, where the upper and lower current measurements show out-of-phase relationship between them with significant coherences. These are consistent with typical characteristics of the first-mode semi-diurnal internal tide. Strong intensification of the near-bottom baroclinic currents is observed only at one site, where the ratio of the bottom slope to the slope of the internal-wave characteristics at the semi-diurnal frequency is close to unity. An energetic near-inertial wave event is observed during the first half of May-June 1988 observation at two mooring sites. Rotary spectra reveal that the most dominant signal is clockwise rotating motion at the near-inertial frequency band. Upward phase and downward energy propagations, shown in time-depth contour plots of near-inertial bandpass filtered currents, are confirmed by cross correlations between the upper- and lower-layer current measurements. The upward-propagating phase speed is estimated to be about 0.13 cm $s^{-1}$ at both sites. Significant coherences and in-phase relationships of near-inertial currents at the same or similar depths between the two sites are observed in spite of their long distance of about 110 km.

Evidence of Vertical Mixing Caused by High Frequency Internal Waves along the Eastern Coast of Korea

  • Han, In-Seong;Lee, Ju;Jang, Lee-Hyun;Suh, Young-Sang;Seong, Ki-Tack
    • Fisheries and Aquatic Sciences
    • /
    • v.11 no.1
    • /
    • pp.41-49
    • /
    • 2008
  • Internal waves and internal tides occur frequently along the eastern coast of Korea. During the spring-tide period in April 2003, the East Korean Warm Current (EKWC) flowed near the Korean East Coast Farming Forecast System (KECFFS; a moored oceanographic measurement system), creating a strong thermocline at the intermediate layer. Weakened stratification and well-mixed water appeared frequently around the KECFFS, with duration of approximately 1 day. The results suggest the following scenario. Baroclinic motion related to the internal tide generated high frequency internal waves around the thermocline. The breaking of those waves then created turbulence around the thermocline. After well-mixed water appeared, a current component with perpendicular direction to the EKWC appeared within the inertial period. The change in stratification around the KECFFS locally broke the geostrophic balance as a transient state. This local vertical mixing formed an ageostrophic current within the inertial period.

A simple analytical model for shelf waves trapped by the Tsushima Island escarpement near the southern part in the East Sea of Korea (한국 동해남부해역 쓰시마섬 주변을 따라서 발생하는 대륙붕파에 대한 간단한 해석적 모델 연구)

  • 윤홍주
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2003.05a
    • /
    • pp.645-647
    • /
    • 2003
  • Tide data made during 1 year on the tide gauge near the Thusima Island (St. Izuhara) give energy spectra. The energy at Tsushima is greater in a period band between the inertial period and 100hrs. A simple analytical model shows that the energy observed corresponds to waves trapped on the extensive continental slope around Tsushima Island. These observations seem to be the first to clearly show the presence of trapped waves.

  • PDF

An Experimental Study on the Motion of the Floater Moored near Port in Waves Generated by a Ship

  • Nguyen, Thi Thanh Diep;Nguyen, Van Minh;Yoon, Hyeon Kyu;Kim, Young Hun
    • Journal of Navigation and Port Research
    • /
    • v.44 no.5
    • /
    • pp.363-374
    • /
    • 2020
  • In the past, various research on the effects of waves generated by ships has been investigated. The most noticeable effect of the waves generated by a passing ship is the increase of the hydrodynamic forces and the unwanted large motion of the moored ship and high mooring forces that occur. Thus, it is crucial to investigate the effect of the waves generated by the passing ship near port on the motion of the moored ship and the tension of the mooring lines. A model test was performed with virtual ship-generated waves in a square tank at CWNU (Changwon National University). The IMU (Inertial Measurement Unit) and Optical-based system were used to measure the 6DOF (Six Degrees of Freedom) motion of the moored floater. Additionally the tension of mooring lines were measured by the tension gauges. The effects of the wave direction and wave height generated by the virtual ship-generated waves on the motion of the moored floater were analyzed.

Numerical Study on the Motion of Azimuthal Vortices in Axisymmetric Rotating Flows

  • Suh, Yong-Kweon
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.2
    • /
    • pp.313-324
    • /
    • 2004
  • A rich phenomenon in the dynamics of azimuthal vortices in a circular cylinder caused by the inertial oscillation is investigated numerically at high Reynolds numbers and moderate Rossby numbers. In the actual spin-up flow where both the Ekman circulation and the bottom friction effects are included, the first appearance of a seed vortex is generated by the Ekman boundary-layer on the bottom wall and the subsequent roll-up near the corner bounded by the side wall. The existence of the small vortex then rapidly propagates toward the inviscid region and induces a complicated pattern in the distribution of azimuthal vorticity, i.e. inertial oscillation. The inertial oscillation however does not deteriorate the classical Ekman-pumping model in the time scale larger than that of the oscillatory motion. Motions of single vortex and a pair of vortices are further investigated under a slip boundary-condition on the solid walls. For the case of single vortex, repeated change of the vorticity sign is observed together with typical propagation of inertial waves. For the case of a pair of vortices with a two-step profile in the initial azimuthal velocity, the vortices' movement toward the outer region is resisted by the crescent-shape vortices surrounding the pair. After touching the border between the core and outer regions, the pair vortices weaken very fast.

Physical Characteristics of Internal Waves and the Effect of Short Depression Internal Wave on Acoustic Transmission in the East Sea (동해 내부파의 물리적 특성과 단주기 오목형 내부파가 음파전달에 미치는 영향)

  • Han, Bong-Wan;Lim, Se-Han;Park, Kyeong-Ju;Kim, Seong-Il
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.12 no.1
    • /
    • pp.37-43
    • /
    • 2009
  • Fluctuations in the ocean are closely related with the underwater acoustic propagation. Internal waves are generated by fluctuation of isopycnal layer in the upper part of the stratified ocean, which are propagated from offshore to coastal area. Physical characteristics of the internal waves existed in the East Sea were derived from the five field experimental data and the ocean monitoring buoy nearshore the mid-east coast of Korea. The dominant periods are appeared in the near-inertial period about $17{\sim}20hours$ and the short period about a few minutes. The wavelengths of them are $10{\sim}50km$ and $300{\sim}1000m$, and the phase speeds are $20{\sim}100cm/s$ and $30{\sim}70cm/s$, respectively The maximum amplitudes are about $20{\sim}25m$. Under the environment of short depression internal wave propagation, the variations of transmission loss field were investigated using an range-dependent acoustic transmission loss model(RAM). The result shows that the large irregular variations of transmission loss caused by progressing the internal wave from offshore toward coast.

Effects of Typhoon and Mesoscale Eddy on Generation and Distribution of Near-Inertial Wave Energy in the East Sea (동해에서 태풍과 중규모 소용돌이가 준관성주기파 에너지 생성과 분포에 미치는 영향)

  • SONG, HAJIN;JEON, CHANHYUNG;CHAE, JEONG-YEOB;LEE, EUN-JOO;LEE, KANG-NYEONG;TAKAYAMA, KATSUMI;CHOI, YOUNGSEOK;PARK, JAE-HUN
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.25 no.3
    • /
    • pp.55-66
    • /
    • 2020
  • Near-inertial waves (NIW) which are primarily generated by wind can contribute to vertical mixing in the ocean. The energetic NIW can be generated by typhoon due to its strong wind and preferable wind direction changes especially on the right-hand side of the typhoon. Here we investigate the generation and distribution of NIW using the output of a real-time ocean forecasting system. Five-year model outputs during 2013-2017 are analyzed with a focus on cases of energetic NIW generation by the passage of three typhoons (Halong, Goni, and Chaba) over the East Sea. Calculations of wind energy input (${\bar{W}}_I$), and horizontal kinetic energy in the mixed layer (${\bar{HKE}}_{MLD}$) reveal that the spatial distribution of ${\bar{HKE}}_{MLD}$, which is strengthened at the right-hand side of typhoon tracks, is closely related with ${\bar{W}}_I$. Horizontal kinetic energy in the deep layer (${\bar{HKE}}_{DEEP}$) shows patch-shaped distribution mainly located at the southern side of the East Sea. Spatial distribution of ${\bar{HKE}}_{DEEP}$ shows a close relationship with negative relative vorticity regions caused by warm eddies in the upper layer. Monthly-mean ${\bar{HKE}}_{MLD}$ and ${\bar{HKE}}_{DEEP}$ during a typhoon passing over the East Sea shows about 2.5-5.7 times and 1.2-1.6 times larger values than those during summer with no typhoons, respectively. In addition, their magnitudes are respectively about 0.4-1.0 and 0.8-1.0 times from those during winter, suggesting that the typhoon-induced NIW can provide a significant energy to enhance vertical mixing at both the mixed and deep layers during summer.

Long-term and Real-time Monitoring System of the East/Japan Sea

  • Kim, Kuh;Kim, Yun-Bae;Park, Jong-Jin;Nam, Sung-Hyun;Park, Kyung-Ae;Chang, Kyung-Il
    • Ocean Science Journal
    • /
    • v.40 no.1
    • /
    • pp.25-44
    • /
    • 2005
  • Long-term, continuous, and real-time ocean monitoring has been undertaken in order to evaluate various oceanographic phenomena and processes in the East/Japan Sea. Recent technical advances combined with our concerted efforts have allowed us to establish a real-time monitoring system and to accumulate considerable knowledge on what has been taking place in water properties, current systems, and circulation in the East Sea. We have obtained information on volume transport across the Korea Strait through cable voltage measurements and continuous temperature and salinity profile data from ARGO floats placed throughout entire East Sea since 1997. These ARGO float data have been utilized to estimate deep current, inertial kinetic energy, and changes in water mass, especially in the northern East Sea. We have also developed the East Sea Real-time Ocean Buoy (ESROB) in coastal regions and made continual improvements till it has evolved into the most up-to-date and effective monitoring system as a result of remarkable technical progress in data communication systems. Atmospheric and oceanic measurements by ESROB have contributed to the recognition of coastal wind variability, current fluctuations, and internal waves near and off the eastern coast of Korea. Long-tenn current meter moorings have been in operation since 1996 between Ulleungdo and Dokdo to monitor the interbasin deep water exchanges between the Japanese and Ulleung Basins. In addition, remotely sensed satellite data could facilitate the investigation of atmospheric and oceanic surface conditions such as sea surface temperature (SST), sea surface height, near-surface winds, oceanic color, surface roughness, and so on. These satellite data revealed surface frontal structures with a fairly good spatial resolution, seasonal cycle of SST, atmospheric wind forcing, geostrophic current anomalies, and biogeochemical processes associated with physical forcing and processes. Since the East Sea has been recognized as a natural laboratory for global oceanic changes and a clue to abrupt climate change, we aim at constructing a 4-D continuous real-time monitoring system, over a decade at least, using the most advanced techniques to understand a variety of oceanic processes in the East Sea.

Considerations of Environmental Factors Affecting the Detection of Underwater Acoustic Signals in the Continental Regions of the East Coast Sea of Korea

  • Na, Young-Nam;Kim, Young-Gyu;Kim, Young-Sun;Park, Joung-Soo;Kim, Eui-Hyung;Chae, Jin-Hyuk
    • The Journal of the Acoustical Society of Korea
    • /
    • v.20 no.2E
    • /
    • pp.30-45
    • /
    • 2001
  • This study considers the environmental factors affecting propagation loss and sonar performance in the continental regions of the East Coast Sea of Korea. Water mass distributions appear to change dramatically in a few weeks. Simple calculation with the case when the NKCW (North Korean Cold Water) develops shows that the difference in propagation loss may reach in the worst up to 10dB over range 5km. Another factor, an eddy, has typical dimensions of 100-200km in diameter and 150-200m in thickness. Employing a typical eddy and assuming frequency to be 100Hz, its effects on propagation loss appear to make lower the normal formation of convergence zones with which sonars are possible to detect long-range targets. The change of convergence zones may result in 10dB difference in received signals in a given depth. Thermal fronts also appear to be critical restrictions to operating sonars in shallow waters. Assuming frequency to be 200Hz, thermal fronts can make 10dB difference in propagation loss between with and without them over range 20km. An observation made in one site in the East Coast Sea of Korea reveals that internal waves may appear in near-inertial period and their spectra may exist in periods 2-17min. A simulation employing simple internal wave packets gives that they break convergence zones on the bottom, causing the performance degradation of FOM as much as 4dB in frequency 1kHz. An acoustic experiment, using fixed source and receiver at the same site, shows that the received signals fluctuate tremendously with time reaching up to 6.5dB in frequencies 1kHz or less. Ambient noises give negative effects directly on sonar performance. Measurements at some sites in the East Coast Sea of Korea suggest that the noise levels greatly fluctuate with time, for example noon and early morning, mainly due to ship traffics. The average difference in a day may reach 10dB in frequency 200Hz. Another experiment using an array of hydrophones gives that the spectrum levels of ambient noises are highly directional, their difference being as large as 10dB with vertical or horizontal angles. This fact strongly implies that we should obtain in-situ information of noise levels to estimate reasonable sonar performance. As one of non-stationary noise sources, an eel may give serious problems to sonar operation on or under the sea bottoms. Observed eel noises in a pier of water depth 14m appear to have duration time of about 0.4 seconds and frequency ranges of 0.2-2.8kHz. The 'song'of an eel increases ambient noise levels to average 2.16dB in the frequencies concerned, being large enough to degrade detection performance of the sonars on or below sediments. An experiment using hydrophones in water and sediment gives that sensitivity drops of 3-4dB are expected for the hydrophones laid in sediment at frequencies of 0.5-1.5kHz. The SNR difference between in water and in sediment, however, shows large fluctuations rather than stable patterns with the source-receiver ranges.

  • PDF