• Title/Summary/Keyword: Near-eutectic alloy

Search Result 20, Processing Time 0.025 seconds

A Study on Manufacturing Process of Hypereutectic Al-Si Alloy via Horizontal Continuous Casting (수평연속주조에 의한 과공정 Al-Si합금 제조에 관한 연구)

  • You, Bong-Sun;Ji, Mu-Sung;Park, Won-Wook
    • Journal of Korea Foundry Society
    • /
    • v.16 no.2
    • /
    • pp.116-123
    • /
    • 1996
  • The equipment for the horizontal continuous casting was built to produce hyper-eutectic Al-Si bars with a small cross-section of 25mm in diameter. The manufacturing processes including withdrawal cycle and secondary cooling methods were modified to refine the primary and the eutectic Si. The longitudinal casting speeds varied over the ranges of 670-1100mm/min for pure Al, and 200-350mm/min for Al-17wt%Si alloy. Due to the difference of cooling rate in the mould, microstructural asymmetry between the lower and the upper part of bar was observed. Thus, manufacturing processes such as cooling and withdrawal method were optimally combinated to get the homogeneous cast structure. With the increase of casting speed, the primary Si size was refined down to $30{\mu}m$ near the surface, and $80{\mu}m$ in the center of the bar.

  • PDF

Effect of Electromagnetic Stirring on Microstructure Evolution in Solidification of a Near-Eutectic Al-Si Alloy

  • Guo, Qing-Tao;Sim, Jae-Gi;Jang, Young-Soo;Choi, Byoung-Hee;Lee, Moon-Hyoung;Hong, Chun-Pyo
    • Journal of Korea Foundry Society
    • /
    • v.28 no.5
    • /
    • pp.226-230
    • /
    • 2008
  • 본 논문에서는 공정조성 부근의 Al-Si 합금의 미세구조에 미치는 전자기교반(EMS)의 영향에 대하여 연구하였다. 초정 a 상의 형상에 미치는 전자기교반의 세기의 영향을 조사하기 위하여 각각 교반장치에 60, 80,및 120V의 전압을 가하여 미세조직을 관찰하였다. 60V 이하의 전압이 인가되었을 때 전자기교반의 효과가 나타나지 않은 반면에, 80V 이상의 전압으로 5초 이상 인가되었을 때 구상화된 초정 a 상을 얻을 수 있었다. 인가된 전압이 120V일 때 초정 a 상은 보다 균일한 분포를 가지며 구상화 되었다. 전자기교반의 세기와 함께 교반시간의 영향을 확인하기 위하여 교반시간을 증가시키면서 미세조직을 관찰하였다. 또한 초정 a 상의 형상에 미치는 주조변수의 영향에 대해서도 실험하였다.

A Study on Low-Melting Temperature Sn-In (wt%) Pb-Free Solders for Photovoltaic Ribbons (태양광 리본용 저융점 Sn-In (wt%) 무연 솔더 연구)

  • Dong-Hyeon Shin;Seung-Han Lee;Tae-Sik Cho;Il-Sub Kim
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.2
    • /
    • pp.186-190
    • /
    • 2023
  • We studied the various characteristics of Sn-In (wt%) Pb-free solders for photovoltaic ribbon application. The solders near the eutectic composition of Sn48In52 (wt%) existed in InSn4 and In3Sn alloy phases, and in In crystal phase, but not in Sn crystal phase. In addition, the InSn4 phase (γ-alloy) existed separately from the In3Sn (β-alloy) and the In phase confirmed by an SEM-EDS-mapping. The melting temperature of the eutectic solder of Sn48In52 (wt%) was 119.2℃, and when the Sn content decreased in reference to the eutectic composition, it slightly increased to 121.4℃, but when the Sn content increased, it remained almost constant at 119.1℃. The peel strength of the ribbon plated with the Sn42In58 (wt%) solder was 38.7 N/mm2, and it tended to increase when the Sn content increased. The peel strength of the eutectic Sn48In52 (wt%) solder was 53.6 N/mm2, and that of the Sn51In49 (wt%) solder was 61.6 N/mm2 that was the highest.

Mechanism of Crack Formation in Pulse Nd YAG Laser Spot Welding of Al Alloys (Al합금 펄스 Nd:YAG 레이저 점 용접부의 균열 발생기구)

  • Ha, Yong Su;Jo, Chang Hyeon;Gang, Jeong Yun;Kim, Jong Do;Park, Hwa Sun
    • Journal of Welding and Joining
    • /
    • v.18 no.2
    • /
    • pp.213-213
    • /
    • 2000
  • This study was performed to investigate types and formation mechanism of cracks in two Al alloy welds, A5083 and A7NO1 spot-welded by pulse Nd: YAG laser, using SEM, EPMA and Micro-XRD. In the weld zone, three types of crack were observed: center line crack($C_{C}$), diagonal crack($C_{D}$), and U shape crack($C_{U}$). Also, HAZ crack($C_{H}$), was observed in the HAZ region, furthermore, mixing crack($C_{M}$), consisting of diagonal crack and HAZ crack was observed.White film was formed at the hot crack region in the fractured surface after it was immersed to 10%NaOH water. In the case of A5083 alloy, white films in C crack and $C_D crack region were composed of low melting phases, Fe₂Si$Al_8$ and eutectic phases, Mg₂Al₃ and Mg₂Si. Such films observed near HAZ crack were also consist of eutectic Mg₂Al₃. In the case of A7N01 alloy, eutectic phases of CuAl₂, $Mg_{32}$ (Al,Zn) ₃, MgZn₂, Al₂CuMg and Mg₂Si were observed in the whitely etched films near $C_{C}$ crack and $C_{D}$ crack regions. The formation of liquid films was due to the segregation of Mg, Si, Fe in the case of A5083 alloy and Zn, Mg, Cu, Si in the case of A7N01 aooly, respectively.The $C_{D}$ and $C_{C}$ cracks were regarded as a result of the occurrence of tensile strain during the welding process. The formation of $C_{M}$ crack is likely to be due to the presence of liquid film at the grain boundary near the fusion line in the base metal as well as in the weld fusion zone during solidification. The $C_{U}$ crack is considered a result of the collapsed keyhole through incomplete closure during rapid solidification. (Received October 7, 1999)

The Effect of Current and Preheat Temperature on Structure and Hardness of Stellite 12 Alloy Overlayer by PTA Process (PTA법에 의한 스텔라이트 12 합금 육성층의 조직과 경도에 미치는 전류와 예열온도의 영향)

  • Jung, B.H.;Kim, M.G.;Kim, G.D.;Kim, M.Y.;Lee, S.Y.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.13 no.4
    • /
    • pp.246-252
    • /
    • 2000
  • Stellite 12 alloy-powder was overlaid on 410 stainless steel valve seat using plasma transferred arc(PTA) process. Variation of characteristic of microstructure and hardness of deposit with current(90~150 A) and preheat temperature(R.T.~$400^{\circ}C$) was investigated. Important conclusion obtained are as follows; All welding conditions used produced a sound deposit layer with no defect in single pass welding. The maximum deposit had 4.0~4.8 mm in thickness and its bead width was increased with increase of current and preheat temperature. The deposit showed hypoeutectic microstruture, which was consisting of primary cobalt dendrite and networked $M_7C_3$ type eutectic carbides. The amount of eutectic carbides was decreased and its dendritic secondary arm spacing was increased with increase of current. Hardness of the deposit was decreased with increase of current. Preheat temperature up to $400^{\circ}C$, however, showed little influence on the hardness and microstructure. The hardness was also influenced by diluted Fe content near the interface in addition to microstructure and dendritic secondary arm spacing. Hot hardness at $500^{\circ}C$ showed higher than 300 HV.

  • PDF

High Temperature Fatigue Deformation Behavior of Automotive Heat Resistant Aluminum Alloys (자동차 부품용 내열 알루미늄 합금의 고온 피로 변형 거동)

  • Park, Jong-Soo;Sung, Si-Young;Han, Bum-Suck;Jung, Chang-Yeol;Lee, Kee-Ahn
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.1
    • /
    • pp.28-38
    • /
    • 2010
  • High temperature high cycle and low cycle fatigue deformation behavior of automotive heat resistant aluminum alloys (A356 and A319 based) were investigated in this study. The microstructures of both alloys were composed of primary Al-Si dendrite and eutectic Si phase. However, the size and distribution for eutectic Si phase varied: a coarse and inhomogeneous distributed was observed in alloy B (A319 based). A brittle intermethallic phase of ${\alpha}-Fe\;Al_{12}(Fe,Mn)_3Si_2$ was detected only in B alloy. Alloy B exhibited high fatigue life only under a high stress amplitued condition in the high cycle fatigue results, whereas alloy A showed high fatigue life when stress was lowered. With regard to the low-cycle fatigue result ($250^{\circ}C$) showing higher fatigue life as ductility increased, alloy A demonstrated higher fatigue life under all of the strain amplitude conditions. Fractographic observations showed that large porosities and pores near the outside surface could be the main factor in the formation of fatigue cracks. In alloy B. micro-cracks were formed in both the brittle intermetallic and coarse Si phasese. These micro-cracks then coalesced together and provided a path for fatigue crack propagation. From the observation of the differences in microstructure and fractography of these two automotive alloys, the authors attempt to explain the high-temperature fatigue deformation behavior of heat resistant aluminum alloys.

Analysis on the non-equilibrium dendritic solidification of a binary alloy with back diffusion (역확산을 고려한 이원합금의 비평형 수지상응고 해석)

  • Jeong, Jae-Dong;Yu, Ho-Seon;Lee, Jun-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.10
    • /
    • pp.3361-3370
    • /
    • 1996
  • Micro-Macro approach is conducted for the mixture solidification to handle the closely linked phenomena of microscopic solute redistribution and macroscopic solidification behavior. For this purpose, present work combines the efficiency of mixture theory for macro part and the capability of microscopic analysis of two-phase model for micro part. The micro part of present study is verified by comparison with experiment of Al-4.9 mass% Cu alloy. The effect of back diffusion on the macroscopic variables such as temperature and liquid concentration, is appreciable. The effect, however, is considerable on the mixture concentration and eutectic fraction which are indices of macro and micro segregation, respectively. According to the diffusion time, the behavior near the cooling wall where relatively rapid solidification permits short solutal diffusion time, approaches Scheil equation limit and inner part approaches lever rule limit.

Hot-dipped Al-Mg-Si Coating Steel - Its Structure, Electrochemical and Mechanical Properties -

  • Tsuru, Tooru
    • Corrosion Science and Technology
    • /
    • v.9 no.6
    • /
    • pp.233-238
    • /
    • 2010
  • Hot-dipped Al-Mg-Si coatings to alternate Zn and Zn alloy coatings for steel were examined on metallographic structure, corrosion resistance, sacrificial ability, formation and growth of inter-metallic compounds, and mechanical properties. Near the eutectic composition of quasi-binary system of Al-$Mg_2Si$, very fine eutectic structure of ${\alpha}$-Al and $Mg_2Si$ was obtained and it showed excellent corrosion resistivity and sacrificial ability for a steel in sodium chloride solutions. Formation and growth of Al-Fe inter-metallic compounds at the interface of substrate steel and coated layer was suppressed by addition of Si. The inter-metallic compounds layer was usually brittle, however, the coating layer did not peel off as long as the thickness of the inter-metallic compounds layer was small enough. During sacrificial protection of a steel, amount of hydrogen into the steel was more than ten times smaller than that of Zn coated steel, suggesting to prevent hydrogen embrittlement. Al-Mg-Si coating is expected to apply for several kinds of high strength steels.

Research on the structure design of the LBE reactor coolant pump in the lead base heap

  • Lu, Yonggang;Zhu, Rongsheng;Fu, Qiang;Wang, Xiuli;An, Ce;Chen, Jing
    • Nuclear Engineering and Technology
    • /
    • v.51 no.2
    • /
    • pp.546-555
    • /
    • 2019
  • Since the first nuclear reactor first critical, nuclear systems has gone through four generations of history, and the fourth generation nuclear system will be truly realized in the near future. The notions of SVBR and lead-bismuth eutectic alloy coolant put forward by Russia were well received by the international nuclear science community. Lead-bismuth eutectic alloy with the ability of the better neutron economy, the low melting point, the high boiling point, the chemical inertness to water and air and other features, which was considered the most promising coolant for the 4th generation nuclear reactors. This study mainly focuses on the structural design optimization of the 4th-generation reactor coolant pump, including analysis of external characteristics, inner flow, and transient characteristic. It was found that: the reactor coolant pump with a central symmetrical dual-outlet volute structure has better radial-direction balance, the pump without guide vane has better hydraulic performance, and the pump with guide vanes has worse torsional vibration and pressure pulsation. This study serves as experience accumulation and technical support for the development of the 4th generation nuclear energy system.

The Estimate of Abrasion resistance of High chromium white cast irons by Dry sand/rubber wheel tester (토사마모실험을 통한 고크롬철계 주조합금의 내마모성 평가)

  • 김상호;김기열;이범주;조정환;박채규
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.38-48
    • /
    • 1998
  • To apply the high chromium white cast irons for sliding parts of construction equipments, the wear characteristics of these alloys which have three kinds of microstructure(hypoeutectic, near-eutectic, hypereutectic) were investigated by dry sand/rubber wheel tester. Also, the effect of heat treatment was investigated for the same alloys. As result of the test, heat treatment have no effect on the wear characteristics. And, hypereutectic composition alloy has the highest wear resistance against SiO$_2$. Also after test, cracking was observed in eutectic and primary carbides of all materials tested. This phenomenon was important factor in the wear resistance.

  • PDF