• Title/Summary/Keyword: Near-Term Climate Prediction

Search Result 5, Processing Time 0.019 seconds

Assessment of Near-Term Climate Prediction of DePreSys4 in East Asia (DePreSys4의 동아시아 근미래 기후예측 성능 평가)

  • Jung Choi;Seul-Hee Im;Seok-Woo Son;Kyung-On Boo;Johan Lee
    • Atmosphere
    • /
    • v.33 no.4
    • /
    • pp.355-365
    • /
    • 2023
  • To proactively manage climate risk, near-term climate predictions on annual to decadal time scales are of great interest to various communities. This study evaluates the near-term climate prediction skills in East Asia with DePreSys4 retrospective decadal predictions. The model is initialized every November from 1960 to 2020, consisting of 61 initializations with ten ensemble members. The prediction skill is quantitatively evaluated using the deterministic and probabilistic metrics, particularly for annual mean near-surface temperature, land precipitation, and sea level pressure. The near-term climate predictions for May~September and November~March averages over the five years are also assessed. DePreSys4 successfully predicts the annual mean and the five-year mean near-surface temperatures in East Asia, as the long-term trend sourced from external radiative forcing is well reproduced. However, land precipitation predictions are statistically significant only in very limited sporadic regions. The sea level pressure predictions also show statistically significant skills only over the ocean due to the failure of predicting a long-term trend over the land.

The Uncertainty of Extreme Rainfall in the Near Future and its Frequency Analysis over the Korean Peninsula using CMIP5 GCMs (CMIP5 GCMs의 근 미래 한반도 극치강수 불확실성 전망 및 빈도분석)

  • Yoon, Sun-kwon;Cho, Jaepil
    • Journal of Korea Water Resources Association
    • /
    • v.48 no.10
    • /
    • pp.817-830
    • /
    • 2015
  • This study performed prediction of extreme rainfall uncertainty and its frequency analysis based on climate change scenarios by Coupled Model Intercomparison Project Phase 5 (CMIP5) for the selected nine-General Circulation Models (GCMs) in the near future (2011-2040) over the Korean Peninsula (KP). We analysed uncertainty of scenarios by multiple model ensemble (MME) technique using non-parametric quantile mapping method and bias correction method in the basin scale of the KP. During the near future, the extreme rainfall shows a significant gradually increasing tendency with the annual variability and uncertainty of extreme ainfall in the RCP4.5, and RCP8.5 scenarios. In addition to the probability rainfall frequency (such as 50 and 100-year return periods) has increased by 4.2% to 10.9% during the near future in 2040. Therefore, in the longer-term water resources master plan, based on the various climate change scenarios (such as CMIP5 GCMs) and its uncertainty can be considered for utilizing of the support tool for decision-makers in water-related disasters management.

Long-term Forecast of Seasonal Precipitation in Korea using the Large-scale Predictors (광역규모 예측인자를 이용한 한반도 계절 강수량의 장기 예측)

  • Kim, Hwa-Su;Kwak, Chong-Heum;So, Seon-Sup;Suh, Myoung-Seok;Park, Chung-Kyu;Kim, Maeng-Ki
    • Journal of the Korean earth science society
    • /
    • v.23 no.7
    • /
    • pp.587-596
    • /
    • 2002
  • A super ensemble model was developed for the seasonal prediction of regional precipitation in Korea using the lag correlated large scale predictors, based on the empirical orthogonal function (EOF) analysis and multiple linear regression model. The predictability of this model was also evaluated by cross-validation. Correlation between the predicted and the observed value obtained from the super ensemble model showed 0.73 in spring, 0.61 in summer, 0.69 in autumn and 0.75 in winter. The predictability of categorical forecasting was also evaluated based on the three classes such as above normal, near normal and below normal that are clearly defined in terms of a priori specified by threshold values. Categorical forecasting by the super ensemble model has a hit rate with a range from 0.42 to 0.74 in seasonal precipitation.

Future Change Using the CMIP5 MME and Best Models: I. Near and Long Term Future Change of Temperature and Precipitation over East Asia (CMIP5 MME와 Best 모델의 비교를 통해 살펴본 미래전망: I. 동아시아 기온과 강수의 단기 및 장기 미래전망)

  • Moon, Hyejin;Kim, Byeong-Hee;Oh, Hyoeun;Lee, June-Yi;Ha, Kyung-Ja
    • Atmosphere
    • /
    • v.24 no.3
    • /
    • pp.403-417
    • /
    • 2014
  • Future changes in seasonal mean temperature and precipitation over East Asia under anthropogenic global warming are investigated by comparing the historical run for 1979~2005 and the Representative Concentration Pathway (RCP) 4.5 run for 2006~2100 with 20 coupled models which participated in the phase five of Coupled Model Inter-comparison Project (CMIP5). Although an increase in future temperature over the East Asian monsoon region has been commonly accepted, the prediction of future precipitation under global warming still has considerable uncertainties with a large inter-model spread. Thus, we select best five models, based on the evaluation of models' performance in present climate for boreal summer and winter seasons, to reduce uncertainties in future projection. Overall, the CMIP5 models better simulate climatological temperature and precipitation over East Asia than the phase 3 of CMIP and the five best models' multi-model ensemble (B5MME) has better performance than all 20 models' multi-model ensemble (MME). Under anthropogenic global warming, significant increases are expected in both temperature and land-ocean thermal contrast over the entire East Asia region during both seasons for near and long term future. The contrast of future precipitation in winter between land and ocean will decrease over East Asia whereas that in summer particularly over the Korean Peninsula, associated with the Changma, will increase. Taking into account model validation and uncertainty estimation, this study has made an effort on providing a more reliable range of future change for temperature and precipitation particularly over the Korean Peninsula than previous studies.

Prediction of Temperature and Heat Wave Occurrence for Summer Season Using Machine Learning (기계학습을 활용한 하절기 기온 및 폭염발생여부 예측)

  • Kim, Young In;Kim, DongHyun;Lee, Seung Oh
    • Journal of Korean Society of Disaster and Security
    • /
    • v.13 no.2
    • /
    • pp.27-38
    • /
    • 2020
  • Climate variations have become worse and diversified recently, which caused catastrophic disasters for our communities and ecosystem including economic property damages in Korea. Heat wave of summer season is one of causes for such damages of which outbreak tends to increase recently. Related short-term forecasting information has been provided by the Korea Meteorological Administration based on results from numerical forecasting model. As the study area, the ◯◯ province was selected because of the highest mortality rate in Korea for the past 15 years (1998~2012). When comparing the forecasted temperatures with field measurements, it showed RMSE of 1.57℃ and RMSE of 1.96℃ was calculated when only comparing the data corresponding to the observed value of 33℃ or higher. The forecasting process would take at least about 3~4 hours to provide the 4 hours advanced forecasting information. Therefore, this study proposes a methodology for temperature prediction using LSTM considering the short prediction time and the adequate accuracy. As a result of 4 hour temperature prediction using this approach, RMSE of 1.71℃ was occurred. When comparing only the observed value of 33℃ or higher, RMSE of 1.39℃ was obtained. Even the numerical prediction model of the whole range of errors is relatively smaller, but the accuracy of prediction of the machine learning model is higher for above 33℃. In addition, it took an average of 9 minutes and 26 seconds to provide temperature information using this approach. It would be necessary to study for wider spatial range or different province with proper data set in near future.