• Title/Summary/Keyword: Near wall flow

Search Result 516, Processing Time 0.022 seconds

TURBULENCE MODULATION OF THE UPWARD TURBULENT BUBBLY FLOW IN VERTICAL DUCTS

  • ZHANG, HONGNA;YOKOMINE, TAKEHIKO;KUNUGI, TOMOAKI
    • Nuclear Engineering and Technology
    • /
    • v.47 no.5
    • /
    • pp.513-522
    • /
    • 2015
  • The present paper aims at improving the modeling of turbulence for the upward turbulent bubbly flow through the use of experimental databases that contain data on small and large vertical ducts. First, the role of bubble-induced turbulence was analyzed, which indicated the dominant role of the bubble-induced turbulence in the duct center for relatively high void fraction cases. Therefore, the turbulence therein was mainly focused on, which indicated that the stronger turbulence could be induced by bubbles in large ducts with similar void fractions as compared to that in small ducts. Next, the turbulence of upward turbulent bubbly flow near the wall is discussed to understand the interaction between the wall-induced and bubble-induced turbulence. It showed that the existence of a wall could suppress the bubble-induced turbulence given the same void fraction, and the existence of bubbles could also suppress the solely wall-induced turbulence as compared to the single-phase turbulent flow, even though the total turbulence is enhanced. The above characteristics indicated that the current turbulence modeling method needs to be modified, especially when the bubble-induced turbulence plays a dominant role.

AN ANALYSIS OF THE CHIMNEY WALL

  • Yang, Young-Kyun
    • Korean Journal of Mathematics
    • /
    • v.7 no.1
    • /
    • pp.27-35
    • /
    • 1999
  • As seen from the ammonium chloride experiment (Chen & Chen [1], Roberts & Loper [11], the interface near chimneys has an up-rising shape and we observe thickening of mush next to chimney. We analyze the thermal boundary layer around chimney that forms as the mush is cooled locally by the fluid rising through the chimney. We obtain solutions of the temperature, the solid fraction, and the pressure in the chimney wall. Also, our expression of the pressure shows that the fluid flow can require a huge pressure in order to pass through the chimney wall if its permeability is very small. We present a simple analytic description of the up-rising shape near the exit of the chimney, due to the fact that the comparatively solute (i.e. $NH_4Cl$ in the case of the ammonium chloride experiment)-rich fluid near the chimney tends to crystallize as it is chilled by the rising jet of cold fluid in the chimney.

  • PDF

Experimental Study on Turbulent Characteristics of Axisymmetric Impinging Jet with a Modified Initial Condition (초기조건의 변형에 따른 축대칭 충돌분사류의 난류특성에 대한 연구)

  • 한용운;이근상
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.12
    • /
    • pp.3166-3178
    • /
    • 1993
  • The turbulent flow characteristics of impinging jet have been investigated by the hot wire anemometry with a movable impinging wall. Turbulences were generated by the meshed jet as well as the typical round jet and their characteristics were compared, of mean velocity profiles, turbulent intensities. Reynolds stresses, similarities and their centerline flow behaviors. The meshed jet tends to make shear layer wider than the normal one in the initial region and the velocity profiles of the normal jet is rather contractive being compared with those of the meshed one near the wall. The effect of meshed exit appears only within 4D at the begining of jets and the cascading process of the meshed one marches more rapidly than that of the normal jet. The wall effects appear in the downstream of about 0.85 H to the impinging wall for every case of wall positions in both nozzles.

Unsteady Analysis of Impeller-Volute Interaction in Centrifugal Pump

  • Cheah, Kean Wee;Lee, Thong See;Winoto, Sonny H.
    • International Journal of Fluid Machinery and Systems
    • /
    • v.4 no.3
    • /
    • pp.349-359
    • /
    • 2011
  • An unsteady numerical analysis has been carried out to study the strong impeller volute interaction of a centrifugal pump with six backward swept blades shrouded impeller. The numerical analysis is done by solving the three-dimensional Reynolds Averaged Navier-Stokes codes with standard k-${\varepsilon}$ two-equations turbulence model and wall regions are modeled with a scalable log-law wall function. The flow within the impeller passage is very smooth and following the curvature of the blade in stream-wise direction. However, the analysis shows that there is a recirculation zone near the leading edge even at design point. When the flow is discharged into volute casing circumferentially from the impeller outlet, the high velocity flow is severely distorted and formed a spiraling vortex flow within the volute casing. A spatial and temporal wake flow core development is captured dynamically and shows how the wake core diffuses. Near volute tongue region, the impeller/volute tongue strong interaction is observed based on the periodically fluctuating pressure at outlet. The results of existing analysis also proved that the pressure fluctuation periodically is due to the position of impeller blade relative to tongue.

Analysis of the turbulent flow on the periodically arranged semi-circular ribs in a rectangular channel (사각채널 내 주기적으로 배열된 반원 리브 영향의 유동해석)

  • Lee, G.H.;Nine, Md.J.;Choi, S.H.;Jeong, H.M.;Chung, H.S.
    • Journal of Power System Engineering
    • /
    • v.15 no.2
    • /
    • pp.31-36
    • /
    • 2011
  • The flow characteristics on the periodically arranged semi-circular ribs in a rectangular channel for turbulent flow have been investigated numerically. The aspect ratio of the rectangular channel was AR=5, the rib height to hydraulic diameter ratio was 0.07 and rib height to channel height ratio was e/H=0.117. The v2-f turbulence model and SST k-${\omega}$ turbulence model were used to find the flow characteristics of near the wall which are suited for realistic phenomena. The numerical analysis results show turbulent flow characteristics and pressure drop at the near the wall as observed experimentally. The results predict that turbulent kinetic energy(k) is closely relative to the diffusion of recirculation flow, and v2-f turbulence model simulation results have a good agreement with experimental.

Spatial Distributions of Spanwise Vortices in a Turbulent Boundary Layer over a Micro-riblet Film (미세 리블렛 평판 상부 난류경계층 유동에서 횡방향 와의 공간적 분포특성)

  • Choi, Yong-Seok;Lee, Sang-Joon
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2660-2665
    • /
    • 2007
  • Turbulent boundary-layer over a micro-riblet film(MRF) was investigated experimentally. The MRF has sharp V-shaped micro scale grooves of $300{\mu}m$ in width and $176.8{\mu}m$ in height. Particle image velocimetry(PIV) system was employed to measure velocity fields of flow over the MRF coated plate. Flow over a smooth plate was also measured for comparison. The PIV measurements were taken in the streamwise wall-normal planes at Re$\theta$= 985 and 2342. Vortex structures of the flow were analyzed by extracting the swirling strength as an unambiguous vortex-identification criterion. As a result the number of spanwise vortices with clockwise(negative) rotation decreases rapidly in the near-wall region(y<0.2h), but decreases slowly in the outer region(0.2h

  • PDF

Study of the unsteady pressure oscillations induced by rectangular cavities in a supersonic flow field

  • Krishnan L.;Ramakrishna M.;Rajan S.C.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.294-298
    • /
    • 2003
  • The complex, unsteady, self-sustained pressure oscillations induced by supersonic flow past a rectangular cavity is investigated using numerical simulations. The present numerical study is performed using a parallel, multiblock solver for the two-dimensional, compressible Navier­Stokes equations. Open cavities with length-to-depth (L / D) ratio in the range 0.5 - 3.3 are considered. This paper sheds light on the cavity physics, cavity oscillatory mechanism, and the organisation of vortical structures inside the cavity. The vortex shedding phenomenon, the shear layer impingement event at the aft wall and the movement of the acoustic/compression wave within the cavity are well predicted. The vortical structures· and the source of the acoustic disturbances are found to be located near the aft wall of the cavity. With the increase in the cavity length, strong recompression of the flow near the aft wall leading to a sudden jump in the cavity form drag is observed. The estimated cavity tones are in good agreement with the available semi­empirical relation. Multiple peaks are noticed in deep and long cavities. For the present free­stream Mach number 1.71, it is observed that around L/D=2.0, the cavity oscillatory mechanism changes from the transverse to longitudinal oscillatory mode. The effects of this transition on various fluid dynamics and acoustic properties are also discussed.

  • PDF

The Magnus Efface of a Rotating Circular Cylinder Near a Plane Wall (벽면 근처에서 회전하는 원주의 마그너스 효과)

  • Ro, Ki-Deok;Kim, Kwang-Seok;Oh, Se-Kyeong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.11
    • /
    • pp.957-962
    • /
    • 2007
  • The flow around a rotating circular cylinder near a plane wall is investigated by the measurement of the lift acting on the cylinder and by the flow visualization using the hydrogen bubble technique in the circulating water tank. The experimental parameters are the rotating direction of the cylinder, the space ratios H/D($H/D=0.05{\sim}0.5$) between cylinder and plane wall and the velocity ratios ${\alpha}({\alpha}=0{\sim}{\pm}2.0)$. In the case of clockwise, the lift on the rotating circular cylinder was increased with the reduction of the space ratios and with the velocity ratios, the upper separation point was more shifted in the rotating direction with them. In the case of anticlockwise, the absolute value of the lift on the rotating circular cylinder was increased with the space ratios and with the velocity ratios, the lower separation point was more shifted in the rotating direction with them.

Simulation of turbulent flow of turbine passage with uniform rotating velocity of guide vane

  • Wang, Wen-Quan;Yan, Yan
    • Coupled systems mechanics
    • /
    • v.7 no.4
    • /
    • pp.421-440
    • /
    • 2018
  • In this study, a computational method for wall shear stress combined with an implicit direct-forcing immersed boundary method is presented. Near the immersed boundaries, the sub-grid stress is determined by a wall model in which the wall shear stress is directly calculated from the Lagrangian force on the immersed boundary. A coupling mathematical model of the transition process for a model Francis turbine comprising turbulent flow and rotating rigid guide vanes is established. The spatiotemporal distributions of pressure, velocity, vorticity and turbulent quantity are gained with the transient process; the drag and lift coefficients as well as other forces (moments) are also obtained as functions of the attack angle. At the same time, analysis is conducted of the characteristics of pressure pulsation, velocity stripes and vortex structure at some key parts of flowing passage. The coupling relations among the turbulent flow, the dynamical force (moment) response of blade and the rotating of guide vane are also obtained.

Evaluation of Suboptimal Control in Turbulent Channel Flow (난류채널유동에서의 준최적제어 평가)

  • Seong, Hyeong-Jin;Choe, Jeong-Il
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.9
    • /
    • pp.1227-1236
    • /
    • 2001
  • A systematic analysis is made of suboptimal control for drag reduction. The influence of the amplitude of actuation (A) and the time scale of actuation ($\Delta$t(sub)a(sup)+) is evaluated. Two wall sensing variables are employed (∂w/∂y│(sub)w and ∂p/∂z│(sub)w) with two wall actuations (${\Phi}$$_2$and ${\Phi}$$_3$). To test the suboptimal control, direct numerical simulations of turbulent channel flow at Re(sub)$\tau$=100 are performed in a spectral domain. It is found that the effect of A and $\Delta$t(sub)a(sup)+∼1. The near-wall behaviors of flow structure are analyzed to characterize the drag reduction. The size effect of the sensor/actuator is examined.