• Title/Summary/Keyword: Near infrared spectroscopy(NIRS)

Search Result 219, Processing Time 0.025 seconds

Comparisons between Micro-Kjeldahl and Near Infrared Reflectance Spectroscopy for Protein Content Analysis of Malting Barley Grain (근적외분광분석법과 Micro-Kjeldahl 법 간의 맥주보리 종실의 단백질함량 분석 비교)

  • Kim, Byung-Joo;Suh, Duck-Yong;Suh, Hyung-Soo
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.39 no.5
    • /
    • pp.489-494
    • /
    • 1994
  • Near Infrared Reflectance Spectroscopy(NIRS) has been used as a tool for the rapid, accurate, protein assay of malting barley. NIRS used in this study was filter type instruments, Neotec 102. The objective of this study was to obtain the best calibration equation, for the rapid, ease and accurate protein content analysis of malting barley using NIRS system. The optimum wavelength for protein content analysis used NIRS were 2095nm, 2095/1941nm, 2095/1941/2282nm, 2905/1941/2282/2086nm, respectively. Mean protein content with this calibration equation in NIRS analysis was 10.59%, while 10.60% in Micro-Kjeldahl one. The range of protein content in Micro-Kjeldahl was 8.66~12.66% and that in NIRS was 8.80~12.35%. When 18 other varieties produced in 1992 were analysed with 2095nm, 2095/1941nm, 2095/1941/2282nm, 2095/1941/2282/2086nm equation, standard deviation of difference (SDD)and standard error of performence(SEP) and $R^2$ values were 0.47, 0.43, 0.95, respectively. Both the mean protein content by Micro-Kjeldahl and by NIRS was 10.25%. With this equation, analysied 31 varities produced in 1993, SDD and SEP and r values were 0.69, 0.67, 0.91, respectively, and that bias value was 0.65. In this analysis, mean protein content by Micro-Kjeldahl was 10.17% and by NIRS was 10.81%. The range of protein content in Micro-Kjeldahl was 7.58~14.29%, What that in NIRS was 8.63~13.93%. After adjusted bias in the best calibration equation, mean protein content of Micro-Kjeldahl was 10.17% and that of NIRS was 10.09%, without variance of SDD, SEP and r values.

  • PDF

Applications of Discrete Wavelet Analysis for Predicting Internal Quality of Cherry Tomatoes using VIS/NIR Spectroscopy

  • Kim, Ghiseok;Kim, Dae-Yong;Kim, Geon Hee;Cho, Byoung-Kwan
    • Journal of Biosystems Engineering
    • /
    • v.38 no.1
    • /
    • pp.48-54
    • /
    • 2013
  • Purpose: This study evaluated the feasibility of using a discrete wavelet transform (DWT) method as a preprocessing tool for visible/near-infrared spectroscopy (VIS/NIRS) with a spectroscopic transmittance dataset for predicting the internal quality of cherry tomatoes. Methods: VIS/NIRS was used to acquire transmittance spectrum data, to which a DWT was applied to generate new variables in the wavelet domain, which replaced the original spectral signal for subsequent partial least squares (PLS) regression analysis and prediction modeling. The DWT concept and its importance are described with emphasis on the properties that make the DWT a suitable transform for analyzing spectroscopic data. Results: The $R^2$ values and root mean squared errors (RMSEs) of calibration and prediction models for the firmness, sugar content, and titratable acidity of cherry tomatoes obtained by applying the DWT to a PLS regression with a set of spectra showed more enhanced results than those of each model obtained from raw data and mean normalization preprocessing through PLS regression. Conclusions: The developed DWT-incorporated PLS models using the db5 wavelet base and selected approximation coefficients indicate their feasibility as good preprocessing tools by improving the prediction of firmness and titratable acidity for cherry tomatoes with respect to $R^2$ values and RMSEs.

Statistical Analysis of Protein Content in Wheat Germplasm Based on Near-infrared Reflectance Spectroscopy (밀 유전자원의 근적외선분광분석 예측모델에 의한 단백질 함량 변이분석)

  • Oh, Sejong;Choi, Yu Mi;Yoon, Hyemyeong;Lee, Sukyeung;Yoo, Eunae;Hyun, Do Yoon;Shin, Myoung-Jae;Lee, Myung Chul;Chae, Byungsoo
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.64 no.4
    • /
    • pp.353-365
    • /
    • 2019
  • A near-infrared reflectance spectroscopy (NIRS) prediction model was set to establish a rapid analysis system of wheat germplasm and provide statistical information on the characteristics of protein contents. The variability index value (VIV) of calibration resources was 0.80, the average protein content was 13.2%, and the content range was from 7.0% to 13.2%. After measuring the near-infrared spectra of calibration resources, the NIRS prediction model was developed through a regression analysis between protein content and spectra data, and then optimized by excluding outliers. The standard error of calibration, R2, and the slope of the optimized model were 0.132, 0.997, and 1.000 respectively, and those of external validation results were 0.994, 0.191, and 1.013, respectively. Based on these results, a developed NIRS model could be applied to the rapid analysis of protein in wheat. The distribution of NIRS protein content of 6,794 resources were analyzed using a normal distribution analysis. The VIV was 0.79, the average protein was 12.1%, and the content range of resources accounting for 42.1% and 68% of the total accessions were 10-13% and 9.5-14.6%, respectively. The composition of total resources was classified into breeding line (3,128), landrace (2,705), and variety (961). The VIV in breeding line was 0.80, the protein average was 11.8%, and the contents of 68% of total resources ranged from 9.2% to 14.5%. The VIV in landrace was 0.76, the protein average was 12.1%, and the content range of resources of 68% of total accessions was 9.8-14.4%. The VIV in variety was 0.80, the protein average was 12.8%, and the accessions representing 68% of total resources ranged from 10.2% to 15.4%. These results should be helpful to the related experts of wheat breeding.

Classification of Red Wines by Near Infrared Transflectance Spectroscopy

  • W.Guggenbichler;Huck, C.W.;M.Popp;G.K.Bonn
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1516-1516
    • /
    • 2001
  • During the recent years, wine analysis has played an increasing role due the health benefits of phenolic ingredients in red wine [1]. On the other hand there is the need to be able to distinguish between different wine varieties. Consumers want to know if a wine is an adulterated one or if it is based on the pure grape. Producers need to certificate their wines in order to ensure compliance with legal regulations. Up to now, the attempts to investigate the origin of wines were based on high-performance liquid chromatography (HPLC), gas chromatography (GC) and pyrolysis mass spectrometry (PMS) [l,2,3]. These methods need sample pretreatment, long analysis times and therefore lack of high sample throughput. In contradiction to these techniques using near infrared spectroscopy (NIRS), no sample pretreatment is necessary and the analysis time for one sample is only about 10 seconds. Hence, a near infrared spectroscopic method is presented that allows a fast classification of wine varieties in bottled red wines. For this, the spectra of 50 bottles of Cabernet Sauvignon, Lagrein and Sangiovese (Chianti) were recorded without any sample pretreatment over a wavelength range from 1000 to 2500 nm with a resolution of 12 cm$\^$-1/. 10 scans were used for an average spectrum. In order to yield best reproducibility, wines were thermostated at 23$^{\circ}C$ and a optical layer thickness of 3 mm was used. All recorded spectra were partitioned into a calibration and validation set (70% and 30%). Finally, a 3d scatter plot of the different investigated varieties allowed to distinguish between Cabernet Sauvignon, Lagrein and Sangiovese (Chianti). Considering the short analysis times this NRS-method will be an interesting tool for the quality control of wine verification and also for experienced sommeliers.

  • PDF

Prediction of Crude Protein, Extractable Fat, Calcium and Phosphorus Contents of Broiler Chicken Carcasses Using Near-infrared Reflectance Spectroscopy

  • Kadim, I.T.;Mahgoub, O.;Al-Marzooqi, W.;Annamalai, K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.7
    • /
    • pp.1036-1040
    • /
    • 2005
  • Near-infrared reflectance spectroscopic (NIRS) calibrations were developed for accurate and fast prediction of whole broiler chicken carcass composition. The Feed and Forage Foss systems Model 5000 Reflectance Transport Model 5000 with near-infrared reflectance spectroscopy (NIRS)-WinISI II windows software was used for this purpose. One equation was developed for the prediction of each carcass component. One hundred and fifty freeze dried broiler whole carcass samples were ground in a Cyclotech 1,093 sample mill and analyzed for dry matter, protein, fat, calcium and phosphate. Samples were divided into two sets: a calibration set from which equations were derived and a prediction set used to validate these equations. The chemical analysis values (mean${\pm}$SD) were calculated based on dry matter basis as follows: dry matter: 33.41${\pm}$2.78 (range: 26.41-43.47), protein: 54.04${\pm}$6.63 (range: 36.20-76.09), fat 35.44${\pm}$8.34 (range: 7.50-55.03), calcium 2.55${\pm}$0.65 (range: 0.99-4.41), phosphorus 1.38${\pm}$0.26 (range: 0.60-2.28). One hundred and three samples were used to calibrate the equations and prediction values. The software used was modified to obtain partial least square regression statistics, as it is the most suitable for natural products analysis. The coefficients of determination ($R^2$) and the standard errors of prediction were 0.82 and 1.83 for the dry matter, 0.96 and 1.98 for protein, 0.99 and 1.07 for fat, 0.90 and 0.30 for calcium and 0.91 and 0.11 for phosphorus, respectively. The present study indicated that NIRS can be calibrated to predict the whole broiler carcass chemical composition, including minerals in a rapid, accurate, and cost effective manner. It neither requires skilled operators nor generates hazardous waste. These findings may have practical importance to improve instrumental procedures for quick evaluation of broiler carcass composition.

APPLICATION OF TIME-OF-FLIGHT NEAR INFRARED SPECTROSCOPY TO WOOD

  • Tsuchikawa, Satoru;Tsutsumi, Shigeaki
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1182-1182
    • /
    • 2001
  • In this study, the newly constructed optical measurement system, which was mainly composed of a parametric tunable laser and a near infrared photoelectric multiplier, was introduced to clarify the optical characteristics of wood as discontinuous body with anisotropic cellular structure from the viewpoint of the time-of-flight near infrared spectroscopy (TOF-NIRS). The combined effects of the cellular structure of wood sample, the wavelength of the laser beam λ, and the detection position of transmitted light on the time resolved profiles were investigated in detail. The variation of the attenuance of peak maxima At, the time delay of peak maxima Δt and the variation of full width at half maximum Δw were strongly dependent on the feature of cellular structure of a sample and the wavelength of the laser beam. The substantial optical path length became about 30 to 35 times as long as sample thickness except the absorption band of water. Δt ${\times}$ Δw representing the light scattering condition increased exponentially with the sample thickness or the distance between the irradiation point and the end of sample. Around the λ=900-950 nm, there may be considerable light scattering in the lumen of tracheid, which is multiple specular reflection and easy to propagate along the length of wood fiber. Such tendency was remarkable for soft wood with the aggregate of thin layers of cell walls. When we apply TOF-NIRS to the cellular structural materials like wood, it is very important to give attention to the difference in the light scattering within cell wall and the multiple specular-like reflections between cell walls. We tried to express the characteristics of the time resolved profile on the basis of the optical parameters for light propagation determined by the previous studies, which were absorption coefficient K and scattering coefficient S from Kubelka-Munk theory and n from nth power cosine model of radiant intensity. The wavelength dependency of the product of K/S and n, which expressed the light-absorbing and -scattering condition and the degree of anisotropy, respectively, was similar to that of the time delay of peak maxima Δt. The variation of the time resolved profile is governed by the combination of these parameters. So, we can easily find the set of parameters for light propagation synthetically from Δt.

  • PDF

Prediction of the Chemical Composition and Fermentation Parameters of Fresh Coarse Italian Ryegrass Haylage using Near Infrared Spectroscopy

  • Kim, Ji Hye;Park, Hyung Soo;Choi, Ki Choon;Lee, Sang Hoon;Lee, Ki-Won
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.37 no.4
    • /
    • pp.350-357
    • /
    • 2017
  • Near infrared spectroscopy (NIRS) is a rapid and accurate method for analyzing the quality of cereals, and dried animal forage. However, one limitation of this method is its inability to measure fermentation parameters in dried and ground samples because they are volatile, and therefore, respectively lost during the drying process. In order to overcome this limitation, in this study, fresh coarse haylage was used to test the potential of NIRS to accurately determine chemical composition and fermentation parameters. Fresh coarse Italian ryegrass haylage samples were scanned at 1 nm intervals over a wavelength range of 680 to 2500 nm, and optical data were recorded as log 1/reflectance. Spectral data, together with first- and second-order derivatives, were analyzed using partial least squares (PLS) multivariate regressions; scatter correction procedures (standard normal variate and detrend) were used in order to reduce the effect of extraneous noise. Optimum calibrations were selected based on their low standard error of cross validation (SECV) values. Further, ratio of performance deviation, obtained by dividing the standard deviation of reference values by SECV values, was used to evaluate the reliability of predictive models. Our results showed that the NIRS method can predict chemical constituents accurately (correlation coefficient of cross validation, $R_{cv}^2$, ranged from 0.76 to 0.97); the exception to this result was crude ash ($R_{cv}^2=0.49$ and RPD = 2.09). Comparison of mathematical treatments for raw spectra showed that second-order derivatives yielded better predictions than first-order derivatives. The best mathematical treatment for DM, ADF, and NDF, respectively was 2, 16, 16, whereas the best mathematical treatment for CP and crude ash, respectively was 2, 8, 8. The calibration models for fermentation parameters had low predictive accuracy for acetic, propionic, and butyric acids (RPD < 2.5). However, pH, and lactic and total acids were predicted with considerable accuracy ($R_{cv}^2$ 0.73 to 0.78; RPD values exceeded 2.5), and the best mathematical treatment for them was 1, 8, 8. Our findings show that, when fresh haylage is used, NIRS-based calibrations are reliable for the prediction of haylage characteristics, and therefore useful for the assessment of the forage quality.

Measurement of Event-related Hemodynamic Responses on Motor Cortex Measured by Near-infrared Spectroscopy (근적외선 분광 분석법을 이용한 운동령에서의 사건 기반 산소 포화도 변화 신호 측정)

  • Lee, Dong-Chul;Shin, Jae-Young;Kim, Ji-Hyun;Jeong, Ji-Chai
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.7
    • /
    • pp.1049-1055
    • /
    • 2012
  • We measure the hemodynamic responses during the 4 kinds of tasks on the motor cortex in the right and left human brain by using near-infrared spectroscopy. The experimental results show that the change of concentration of oxy-hemoglobin is larger than that of deoxy-hemoglobin and the change of concentration of chromophores induced by finger and arm related task show more activations than that of leg.

Possibility of the Nondestructive Quality Evaluation of Apples using Near-infrared Spectroscopy (근적외 분광분석법을 응용한 사과의 비파괴 품질 측정 가능성 조사)

  • Sohn, Mi-Ryeong;Kwon, Young-Kil;Lee, Kyung-Hee;Park, Woo-Churl;Cho, Rae-Kwang
    • Applied Biological Chemistry
    • /
    • v.41 no.2
    • /
    • pp.153-159
    • /
    • 1998
  • A possibility of evaluation of the major internal quality factors-Brix, moisture contents, firmness and acid content in the Korean domestic 'Fuji'apple fruits by near-infrared reflectance spectroscopic (NIRS) methods were investigated. A multiple linear regression(MLR) analysis between the data obtained by physico- chemical analysis method using refractometer, freeze drier, texture analyzer and titrater and NIR spectral data was carried out to make a calibration. The standard error of prediction(SEP) of Brix, moisture, firmness and acid content were $0.50^{\circ}Brix,\;0.64%,\;0.14kg/cm^2$ and 0.07%. It is concluded that NIRS methods can be used to evaluate Brix and moisture contents of in a apple non-destructive and rapid way but the accuracy for determination of firmness and acid content was slightly low.

  • PDF

RAPID PREDICTION OF ENERGY CONTENT IN CEREAL FOOD PRODUCTS WITH NIRS.

  • Kays, Sandra E.;Barton, Franklin E.
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1511-1511
    • /
    • 2001
  • Energy content, expressed as calories per gram, is an important part of the evaluation and marketing of foods in developed countries. Currently accepted methods of measurement of energy by U.S. food labeling legislation include measurement of gross calories by bomb calorimetry with an adjustment for undigested protein and by calculation using specific factors for the energy values of protein, carbohydrate less the amount of insoluble dietary fiber, and total fat. The ability of NIRS to predict the energy value of diverse, processed and unprocessed cereal food products was investigated. NIR spectra of cereal products were obtained with an NIR Systems monochromator and the wavelength range used for analysis was 1104-2494 nm. Gross energy of the foods was measured by oxygen bomb calorimetry (Parr Manual No. 120) and expressed as calories per gram (CPGI, range 4.05-5.49 cal/g). Energy value was adjusted for undigested protein (CPG2, range 3.99-5.38 cal/g) and undigested protein and insoluble dietary fiber (CPG3, range 2.42-5.35 cal/g). Using a multivariate analysis software package (ISI International, Inc.) partial least squares models were developed for the prediction of energy content. The standard error of cross validation and multiple coefficient of determination for CPGI using modified partial least squares regression (n=127) was 0.060 cal/g and 0.95, respectively, and the standard error of performance, coefficient of determination, bias and slope using an independent validation set (n=59) were 0.057 cal/g, 0.98, -0.027 cal/g and 1.05 respectively. The PLS loading for factor 1 (Pearson correlation coefficient 0.92) had significant absorption peaks correlated to C-H stretch groups in lipid at 1722/1764 nm and 2304/2346 nm and O-H groups in carbohydrate at 1434 and 2076 nm. Thus the model appeared to be predominantly influenced by lipid and carbohydrate. Models for CPG2 and CPG3 showed similar trends with standard errors of performance, using the independent validation set, of 0.058 and 0.088 cal/g, respectively, and coefficients of determination of 0.96. Thus NIRS provides a rapid and efficient method of predicting energy content of diverse cereal foods.

  • PDF