• 제목/요약/키워드: Near Nozzle Region

검색결과 64건 처리시간 0.023초

Atomization Characteristics of Intermittent Multi-Hole Diesel Spray Using Time-Resolved PDPA Data

  • Lee, Jeekuen;Shinjae Kang;Park, Byungjoon
    • Journal of Mechanical Science and Technology
    • /
    • 제17권5호
    • /
    • pp.766-775
    • /
    • 2003
  • The intermittent spray characteristics of a multi-hole diesel nozzle with a 2-spring nozzle holder were investigated experimentally. Without changing the total orifice exit area, the hole number of the multi-hole nozzle varied from 3 (d$\_$n/=0.42 mm) to 5 (d$\_$n/=0.32 mm). The time-resolved droplet diameters of the spray including the SMD (Saute. mean diameter) and the AMD (arithmetic mean diameter), injected intormittently from the multi-hole nozzles into still ambient ai., were measured by using a 2-D PDPA (phase Doppler particle analyze.). The 5-hole nozzle spray shows the smaller spray cone angle, the decreased SMD distributions and the small difference between the SMD and the AMD, compared with that of the 3-hole nozzle spray. From the SMD distributions with the radial distance, the spray structure can be classified into the three regions : (a) the inner region showing the high SMD distribution , (b) the mixing flow region where the shea. flow structure would be constructed : and (c) the outer region formed through the disintegration processes of the spray inner region and composed of fine droplets. Through the SMD distributions along the spray centerline, it reveals that the SMD decreases rapidly after showing the maximum value in the vicinity of the nozzle tip. The SMD remains the constant value near the Z/d$\_$n/=166 and 156.3 for the 3-hole and 5-hole nozzles, which illustrate that the disintegration processes of the 5-hole nozzle spray proceed more rapidly than that of the 3-hole nozzle spray.

예조건화 기법과 직접모사법을 이용한 추력기 플룸 거동에 관한 연구 (Study on the Thruster Plume Behaviors using Preconditioned Scheme and DSMC Method)

  • 이균호;김수겸;유명종
    • 항공우주기술
    • /
    • 제8권1호
    • /
    • pp.144-153
    • /
    • 2009
  • 일반적으로 노즐 출구 부근에서 준연속체 상태로 방출된 추력기 플룸 유동은 노즐출구에서 멀어질수록 천이영역을 거쳐 자유분자 영역에 도달하기 때문에 희박영역에서의 추력기 플룸 영향을 연구하기 위해서는 광범위한 유동영역의 모델링이 가능한 직접모사법(DSMC)이 주로 사용된다. 본 논문에서는 희박영역에서 소형 단일추진제 추력기의 플룸 거동을 직접모사법을 이용해 수치적으로 예측하는 것이 목적이다. 정확한 결과를 효율적으로 유추하기 위해 예조건화 기법을 노즐 내부 연속체 영역의 해석에 도입하였으며, 이로부터 얻은 노즐 출구의 물성치 결과들을 직접모사법의 유입조건으로 적용하였다. 이렇게 두 기법을 결합하여 사용한 결과, 노즐 출구 부근에서 발생되는 강한 비평형성 및 넓은 후방 유동 영역 등과 같이 희박영역에서 플룸이 가지는 고유의 특성들을 확인할 수 있었다.

  • PDF

터널내 환기용 덕트 주위의 유체유동 해석 (Analysis of Fluid Flow around Ventilation Ducts inside a Vehicle Tunnel)

  • 서용권;이창우;최윤환
    • 터널과지하공간
    • /
    • 제6권1호
    • /
    • pp.64-68
    • /
    • 1996
  • Analyzed in this paper is fluid flow in the region near the exhaust and blower ports of the ventilation ducts inside a vehicle tunnel. Theoretical analysis shows that prediction of the energy loss in this region is important for designing the ventilation system. A finite-difference numerical model for the two-dimensional turbulent flow field was used to obtain the flow solution as well as the energy loss. It was shown that the blower-nozzle angle ($\beta$) had an important role in establishing both the pressure gradient and the energy loss, while the effect of the distance between two ports on them was not so significant.

  • PDF

타원형 제트 스크리치 반사판이 과소팽창 음속 제트에 미치는 영향 (Effects of an Elliptic Jet Screech Reflector on an Underexpanded Sonic Jet)

  • 김정훈;김진화;유정열
    • 대한기계학회논문집B
    • /
    • 제28권8호
    • /
    • pp.887-894
    • /
    • 2004
  • A technique of mixing enhancement by using an elliptic jet screech reflector has been examined experimentally in an underexpanded sonic round jet where jet screech tone is generated. Since jet screech is known to enhance jet spreading, a reflector was designed to focus jet screech waves near the nozzle lip at an underexpanded jet. The reflector has an elliptic cross section of which one focus is located near the nozzle lip and the other in the jet screech source region in a plane including the jet axis. In the jet with the elliptic reflector, the mass flow rate showed a significant increase in the jet entrainment when compared to that for the small disk reflector. This was attributed to the increased screech amplitude near the nozzle lip as well as the mode change of the jet. The jet mixing was also increased by the amplified jet screech at two other underexpanded jets, but the jet oscillation mode did not change.

연료분무의 위상도플러 측정과 확률밀도함수의 도출 (Phase Doppler Measurements and Probability Density Functions in Liquid Fuel Spray)

  • 구자예
    • 대한기계학회논문집
    • /
    • 제18권4호
    • /
    • pp.1039-1049
    • /
    • 1994
  • The intermitternt and transient fuel spray have been investigated from the simultaneous measurement of droplet sizes and velocities by using Phase/Doppler Particle Analyzer(PDPA). Measurement have been done on the spray axis and at the edge of the spray near nozzle at various gas-to-liquid density ratios(.rho./sub g//.rho./sub l/) that ranges from those found in free atmospheric jets to conditions typical of diesel engines. Probability density distributions of the droplet size and velocity were obtained from raw data and mathematical probability density functions which can fit the experimental distribations were extracted using the principle of maximum likelihood. In the near nozzle region on the spray axis, droplet sizes ranged from the lower limit of the measurement system to the order of nozzle diameter for all (.rho./sub g/ /.rho./sub l/) and droplet sizes tended to be small on the spray edge. At the edge of spray, average droplet velocity peaked during needle opening and needle closing. The rms intensity is greatly incresed as the radial distance from the nozzle is increased. The probability density function which can best fit the physical breakage process such as breakup of fuel drops is exponecially decreasing log-hypebolic function with 4 parameters.

정현파 형상 노즐 제트의 유동특성에 관한 실험적 연구 (Experimental Study on the Flow Characteristics of Sinusoidal Nozzle Jet)

  • 김학림;;이상준
    • 한국가시화정보학회지
    • /
    • 제7권2호
    • /
    • pp.28-34
    • /
    • 2010
  • Two turbulent jet with different sinusoidal nozzle exit configurations of in-phase and $180^{\circ}$ out-of-phase were investigated experimentally using a smoke-wire method and a hot-wire anemometry. Mean velocity and turbulence intensity were measured at several downstream locations under $Re_D\;=\;5000$. For the case of in-phase nozzle configuration, the length of potential core exhibits negligible difference with respect to the transverse locations (0, $\lambda/4$ and $\lambda/2$), similar to that of a plane jet. On the other hand, a maximum difference of 30% in the potential-core length occurs for the $180^{\circ}$ out-of-phase configuration. The spatial distributions of turbulence intensities also show significant difference for the nozzle of $180^{\circ}$ out-of-phase, whereas non-symmetric distribution is observed in the near-exit region(x/D = 1) for the in-phase sinusoidal nozzle jet. Compared to a slit planc jet, the sinusoidal nozzle jets seem to suppress the velocity deficit as the flow goes downstream. The sinusoidal nozzle jet was found to decrease turbulent intensity dramatically. The flow visualization results show that the flow characteristics of the sinusoidal nozzle jet are quite different from those of the slit plane jet.

기체가 주입된 원통형 용기내에서 기포유동에 관한 연구 (A Study on Bubbles Flow in the Gas-injected Cylindrical Bath)

  • 서동표;박근욱;오율권
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2002년도 학술대회지
    • /
    • pp.393-396
    • /
    • 2002
  • Submerged gas-injected system can be applied to various industrial field such as metallurgical and chemical processes, So this study aims at presenting the relevant relationship between gas phase and liquid phase in a gas-injected bath. In a cylinderical bath, local gas volume fraction and bubble frequency were measured by electroconductivity probe and oscilloscope. The temperature of each phase was measured using thermocouple and data acquisition system. In vertical gas injection system, gas-liquid two phase plume was formed, being symmetry to the axial direction of injection nozzle and in a shape of con. Lacal gas-liquid flow becomes irregular around the injection nozzle due to kinetic energy of gas and the flow variables show radical change at the vicinity of gas(air) injection nozzle As most of the kinetic energy of gas was transferred to liquid in this region, liquid started to circulate. In this reason, this region was defined as 'developing flow region' The Bubble was taking a form of churn flow at the vicinity of nozzle. Sometimes smaller bubbles formed by the collapse of bubbles were observed. The gas injected into liquid bath lost its kinetic energy and then was governed by the effect of buoyancy. In this region the bubbles which lost their kinetic energy move upward with relatively uniform velocity and separate. Near the gas nozzle, gas concentration was the highest. But it started to decrease as the axial distance increased, showing a Gaussian distribution.

  • PDF

충돌면과 노즐의 형상이 원형충돌제트에 의한 충돌순음 발생에 미치는 영향 (Effect of Nozzle Configuration and Impinging Surface on the Impinging Tone Generation by Circular Jets)

  • 임정빈;권영필
    • 대한기계학회논문집B
    • /
    • 제27권6호
    • /
    • pp.693-700
    • /
    • 2003
  • The effect of the configuration of the nozzle and the impinging surface on the characteristics of the hole-tones has been experimentally investigated. It is found that the plate-tone is a special case of hole-tones, where the hole diameter is zero. The jet velocity range for hole-tones is divided into the low velocity region associated with laminar jet and the high velocity region with turbulent jet. The frequency of the tone is that for the shear layer instability at the nozzle exit or that attainable by a cascade of vortex pairing process with increase of the impinging distance. When the distance is longer than one diameter the frequency decreases to the terminal value near the preferred frequency of the column mode instability, in the range 0.23< $St_d$<0.53, where $St_d$ is the Strouhal number defined by $fd/U_J$, f the frequency, d the nozzle diameter, and $U_J$ the exit velocity. While the convection speed of the downstream vortex, in the present study, is almost constant at low-speed laminar jet, it increases with distance at high-speed turbulent jet. As the frequency increases, the convection speed decreases in the low frequency range corresponding to the preferred mode, in agreement with the existing experimental data for a free jet.

수직상향 기체 주입에 따른 기포 및 액상의 유동분석 (Flow Analysis of Bubble and Liquid Phase by Vertical Upward Gas Injection)

  • 서동표;오율권
    • 설비공학논문집
    • /
    • 제15권9호
    • /
    • pp.727-732
    • /
    • 2003
  • In the present study, a PIV measurement and image processing technique were applied in order to investigate the flow characteristics in the gas injected liquid bath. The circulation of liquid was induced by upward bubble flow. Due to the centrifugal force, the flow was well developed near both wall sides than in the center of a bath. The vortex flow irregularly repeated generation and disappearance which helped to accelerate the mixing process. The bubble rise velocity in the bottom region was relatively lower than in the upper region because the energy generated by bubbles' behavior in the region near the nozzle was almost converted into kinetic energy But bubble rise velocity increases with the increase of the axial distance since kinetic energy of rising bubbles is added to buoyancy force. In conclusion, the flow increased bubble rise velocity and the flow of the bottom region became more active.

노즐 형상비에 따른 고압 분사류의 유동특성에 관한 실험적 연구 (Experimental Study on the Flow Characteristics of High Pressurized Jets Depending upon Aspect Ratio)

  • 남궁정환;이상진;김규철;이삼구;노병준
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2002년도 학술대회지
    • /
    • pp.233-236
    • /
    • 2002
  • The high-pressurized spray nozzle is used f3r special washing and cutting with strong impact force. The performance of this nozzle, which focused on spray penetration and radial dispersion, was mainly investigated to maximize the momentum and minimize the flow loss. Hence, our experimental research was conducted by changing the aspect ratio ranging from 0 to 3 with nozzle outlet of 1.1. The spray trajectory far high-pressurized water was experimentally investigated using PDPA diagnostics, which was available at spray downstream region. As the spray at upstream near the nozzle exit did not show the improved disintegration. The results showed empirical correlation with regard to non-dimensional axial velocity distribution, spray penetration, and radial spreading rate with photographic visualization.

  • PDF