• Title/Summary/Keyword: Near Infrared Band

Search Result 252, Processing Time 0.026 seconds

Vegetation Monitoring using Unmanned Aerial System based Visible, Near Infrared and Thermal Images (UAS 기반, 가시, 근적외 및 열적외 영상을 활용한 식생조사)

  • Lee, Yong-Chang
    • Journal of Cadastre & Land InformatiX
    • /
    • v.48 no.1
    • /
    • pp.71-91
    • /
    • 2018
  • In recent years, application of UAV(Unmanned Aerial Vehicle) to seed sowing and pest control has been actively carried out in the field of agriculture. In this study, UAS(Unmanned Aerial System) is constructed by combining image sensor of various wavelength band and SfM((Structure from Motion) based image analysis technique in UAV. Utilization of UAS based vegetation survey was investigated and the applicability of precision farming was examined. For this purposes, a UAS consisting of a combination of a VIS_RGB(Visible Red, Green, and Blue) image sensor, a modified BG_NIR(Blue Green_Near Infrared Red) image sensor, and a TIR(Thermal Infrared Red) sensor with a wide bandwidth of $7.5{\mu}m$ to $13.5{\mu}m$ was constructed for a low cost UAV. In addition, a total of ten vegetation indices were selected to investigate the chlorophyll, nitrogen and water contents of plants with visible, near infrared, and infrared wavelength's image sensors. The images of each wavelength band for the test area were analyzed and the correlation between the distribution of vegetation index and the vegetation index were compared with status of the previously surveyed vegetation and ground cover. The ability to perform vegetation state detection using images obtained by mounting multiple image sensors on low cost UAV was investigated. As the utility of UAS equipped with VIS_RGB, BG_NIR and TIR image sensors on the low cost UAV has proven to be more economical and efficient than previous vegetation survey methods that depend on satellites and aerial images, is expected to be used in areas such as precision agriculture, water and forest research.

INTERNATIONAL COOPERATION OF THE COSMIC INFRARED BACKGROUND EXPERIMENT (적외선 우주배경복사 관측 실험 국제 공동 연구)

  • Lee, D.H.;Nam, U.W.;Lee, S.;Jin, H.;Yuk, I.S.;Kim, K.H.;Pak, S.
    • Publications of The Korean Astronomical Society
    • /
    • v.21 no.2
    • /
    • pp.21-26
    • /
    • 2006
  • A Korean team (Korea Astronomy and Space Science Institute, Korea Basic Science Institute, and Kyung Hee University) takes part in an international cooperation project called CIBER (Cosmic Infrared Background ExpeRiment), which has begun with Jet Propulsion Laboratory (JPL) in USA and Institute of Space and Astronautical Science (ISAS) in Japan. CIBER is a rocket-borne instrument, of which the scientific goal is to measure the cosmic near-infrared extra-galactic background to search for signatures of primordial galaxy formation. CIBER consists of a wide-field two-color camera, a low-resolution absolute spectrometer, and a high-resolution narrow-band imaging spectrometer. The Korean team is in charge of the ground support electronics and manufacturing of optical parts of the narrow-band spectrometer, which will provide excellent opportunities for science and technology to Korean infrared groups.

Energy-band model on photoresponse transitions in biased asymmetric dot-in-double-quantum-well infrared detector

  • Sin, Hyeon-Uk;Choe, Jeong-U;Kim, Jun-O;Lee, Sang-Jun;No, Sam-Gyu;Lee, Gyu-Seok;Krishna, S.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.234-234
    • /
    • 2010
  • The PR transitions in asymmetric dot-in-double-quantum-well (DdWELL) photodetector is identified by bias-dependent spectral behaviors. Discrete n-i-n infrared photodetectors were fabricated on a 30-period asymmetric InAs-QD/[InGaAs/GaAs]/AlGaAs DdWELL wafer that was prepared by MBE technique. A 2.0-monolayer (ML) InAs QD ensemble was embedded in upper combined well of InGaAs/GaAs and each stack is separated by a 50-nm AlGaAs barrier. Each pixel has circular aperture of 300 um in diameter, and the mesa cell ($410{\times}410\;{\mu}m^2$) was defined by shallow etching. PR measurements were performed in the spectral range of $3{\sim}13\;{\mu}m$ (~ 100-400 meV) by using a Fourier-transform infrared (FTIR) spectrometer and a low-noise preamplifier. The asymmetric photodetector exhibits unique transition behaviors that near-/far-infrared (NIR/FIR) photoresponse (PR) bands are blue/red shifted by the electric field, contrasted to mid-infrared (MIR) with no dependence. In addition, the MIR-FIR dual-band spectra change into single-band feature by the polarity. A four-level energy band model is proposed for the transition scheme, and the field dependence of FIR bands numerically calculated by a simplified DdWELL structure is in good agreement with that of the PR spectra. The wavelength shift by the field strength and the spectral change by the polarity are discussed on the basis of four-level transition.

  • PDF

Sea Fog Detection Algorithm Using Visible and Near Infrared Bands (가시 밴드와 근적외 밴드를 이용한 해무 탐지 알고리즘)

  • Lee, Kyung-Hun;Kwon, Byung-Hyuk;Yoon, Hong-Joo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.13 no.3
    • /
    • pp.669-676
    • /
    • 2018
  • The Geostationary Ocean Color Imager(: GOCI) detects the sea fog at a high horizontal resolution of $500m{\times}500m$ using the Rayleigh corrected reflectance of 8 bands. The visible and the near infrared waves strongly reflect the characteristics of the earth surface, causing errors in cloud and fog detection. A threshold of the Band7 reflectance was set to detect the sea fog entering the land. When the region on which Band4 reflectance is larger than Band8 is determinated as cloud, the error over-estimated as sea fog is corrected by comparing the average reflectance with the surrounding region. The improved algorithm has been verified by comparing the fog images of the Cheollian satellite (COMS: Communication, Ocean, and Meteorological Satellite) as well as the visibility data from the Korea Meteorological Administration.

DEBRIS DISKS EXPLORED BY AKARI AND IRSF

  • Kiriyama, Y.;Ishihara, D.;Nagayama, T.;Kaneda, H.;Oyabu, S.;Onaka, T.;Fujiwara, H.
    • Publications of The Korean Astronomical Society
    • /
    • v.27 no.4
    • /
    • pp.181-182
    • /
    • 2012
  • Using the AKARI mid-infrared all-sky survey catalogue, we are searching for debris disks which are important objects as an observational clue to on-going planetary system formation. Debris disk candidates are selected through a significant excess of the measured flux over the predicted flux for the stellar photospheric emission at $18{\mu}m$. The fluxes were originally estimated based on the near-infrared spectral energy distributions (SEDs) of central stars constructed from the 2MASS J-, H-, and Ks-band fluxes. However, we found that in many cases the 2MASS photometry has large errors due to saturation in the central part of a star image. Therefore we performed follow-up observations with the IRSF 1.4m near-infrared telescope in South Africa to obtain accurate fluxes in the J-, H-, and Ks-bands. As a result, we have succeeded in improving the SEDs of the central stars. This improvement of the SEDs allows us to make more reliable selection of the candidates.

Recovering the Colors of Objects from Multiple Near-IR Images

  • Kim, Ari;Oh, In-Hoo;Kim, Hong-Suk;Park, Seung-Ok;Park, Youngsik
    • Journal of the Optical Society of Korea
    • /
    • v.19 no.1
    • /
    • pp.102-111
    • /
    • 2015
  • This paper proposes an algorithm for recovering the colors of objects from multiple near-infrared (near-IR) images. The International Commission on Illumination (CIE) color coordinates of objects are recovered from a series of gray images captured under multiple spectral near-IR illuminations using polynomial regression. The feasibility of the proposed algorithm is tested experimentally by using 24 color patches of the Color Rendition Chart. The experimental apparatus is composed of a monochrome digital camera without an IR cut-off filter and a custom-designed LED illuminator emitting multiple spectral near-IR illuminations, with peak wavelengths near the red edge of the visible band, namely at 700, 740, 780, and 860 nm. The average color difference between the original and the recovered colors for all 24 patches was found to be 11.1. However, if some particular patches with high value are disregarded, the average color difference is reduced to 4.2, and this value is within the acceptability tolerance for complex image on the display.

Determination of Hydrogen Peroxide Concentration by Portable Near-Infrared (NIR) System (근적외분광분석법을 이용한 과산화수소의 농도 측정)

  • 임현량;우영아;장수현;김경미;김효진
    • YAKHAK HOEJI
    • /
    • v.46 no.5
    • /
    • pp.324-330
    • /
    • 2002
  • This experiment was carried out to determine non-destructively the hydrogen peroxide concentration of 3% antiseptic hydrogen peroxide solutions by portable near-infrared (NIR) system. Hydrogen peroxide standards were prepared ranging from 0 to 25.6 w/w% and the NIR spectra of hydrogen peroxide standard solutions were collected by using a quartz cell in 1 mm pathlength. We found the variation of absorbance band due to OH vibration of hydrogen peroxide depending on the concentration around 1400 nm in the second derivatives spectra. Partial least square regression (PLSR) and multilinear regression (MLR) were explored to develop a calibration model over the spectral range 1100-1720 nm. The model using PLSR was better than that using MLR. The calibration showed good results with a standard error of prediction (SEP) of 0.16%. In order to validate the developed calibration model, routine analyses were performed using commercial antiseptic hydrogen peroxide solutions. The hydrogen peroxide values from the NIR calibration model were compared with the values from a redox titration method. The NIR routine analyses results showed good correlation with those of the redox titration method. This study showed that the rapid and non-destructive determination of hydrogen peroxide in the antiseptic solution was successfully performed by portable NIR system without very harmful solvents.

The Syntheses and Application of NIR Dyes Based On Light Absorbing Properties

  • Park, Soo-Youl;Shin, Seung-Rim;Shin, Joung-Il;An, Kyoung-Lyong;Lee, Sang-Oh;Jun, Kun
    • Proceedings of the Korean Society of Dyers and Finishers Conference
    • /
    • 2010.03a
    • /
    • pp.49-50
    • /
    • 2010
  • The near-infrared absorbing donor-acceptor chromophores have been investigated by varying the electron donating and accepting molecular moiety. A series of near-infrared absorbing chromophores were offered narrow and intense absorption band in a various organic solvents. The dyes synthesised were, however, strongly bathochromic shift which extended well into the near-infrared region. The functional uses of dyes are vast in number, and it is convenient to classify them in some way. In all cases, it is the $\Pi$-chromophore that plays a major role in the functional application. "Light absorption" is of course the most commonly used property of a dye chromophore, and it can be employed directly, e.g. in light filters and optical data recording, or it can be used to drive further functional processes, e.g. fluorescence, photochromism, photosensitization.

  • PDF

Analysis and dehazing of near-infrared images (근적외선(NIR) 영상의 특성 분석 및 안개제거)

  • Yu, Jae Taeg;Ra, Sung Woong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.1
    • /
    • pp.33-39
    • /
    • 2016
  • Color image dehazing techniques have been extensively studied, and especially the dark channel prior (DCP)-based method has been widely used. Near infrared (NIR) image based applications are also widespread; however, NIR image-specific dehazing techniques have not attracted great interest. In this paper, the characteristics of NIR images are analyzed and compared with the color images' characteristics. The conventional color image dehazing method is also applied to NIR images to understand its effectiveness on different frequency-band signals. Furthermore, we modify the DCP method considering the characteristics of NIR images and show that our proposed method results in improved dehazed NIR images.

Absolute calibration of near-infrared Period-Luminosity-Metallicity relations for RR Lyrae variables using Gaia EDR3

  • Bhardwaj, Anupam;Rejkuba, Marina;Yang, Soung-Chul
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.1
    • /
    • pp.35.1-35.1
    • /
    • 2021
  • RR Lyrae stars are sensitive probe for the precision stellar astrophysics and also for the cosmic distance scale thanks to their well-defined near-infrared Period-Luminosity relations (PLRs). These horizontal branch variables can be used for primary calibration of the first-rung of population II distance ladder providing an evaluation of the ongoing tension between Cepheid-Supernovae based Hubble constant and the Planck results. Therefore, absolute calibration of RR Lyrae PLRs is now crucial to complement or test the tip of the red giant branch based distances, and in turn, population II star based Hubble constant measurements. While the pulsation models of RR Lyrae can reproduce most observables, they predict a significant metallicity effect on their JHKs-band PLRs that is inconsistent with so-far limited observational studies. We remedy this inconsistency of metallicity dependence in RR Lyrae PLRs by combining their near-infrared observations in the globular clusters of different mean-metallicities with the new parallaxes from the Gaia early data release 3 (EDR3). Our empirical results on Period-Luminosity-Metallicity (PLZ)relations are consistent with theoretical predictions but the precision of absolute calibrations is still affected by the parallax uncertainties and the systematic zero-point offset present in the Gaia EDR3.

  • PDF