• Title/Summary/Keyword: NdFeCoB

Search Result 103, Processing Time 0.032 seconds

Design of the Magnetizing System which is used for Magnetizing the NdFeB Magnet in a Squirrel Cage Rotor (유한요소해석을 이용한 영구자석매입형 유도성기동 동기전동기의 조립후 착자시스템 설계)

  • Lee, C.G.;Kwon, B.I.;Kim, B.T.;Woo, K.I.;Yang, B.Y.
    • Proceedings of the KIEE Conference
    • /
    • 2001.04a
    • /
    • pp.404-406
    • /
    • 2001
  • This paper is about designing the magnetizing system which is used for magnetizing the NdFeB magnet in a squirrel cage rotor. It propose the shape of the magnetizing yoke, the number of coil turn and the capacitor discharging circuit parameter. In case of magnetizing the NdFeB magnet assembled with a squirrel cage rotor, the eddy current which is produced during magnetizing becomes a disturbance in magnetizing NdFeB magnet. Hence in this paper, we try to design optimized magnetizing system with eddy current considered by FEM(Finite Element Method).

  • PDF

Nanocomposite Magnetic Materials

  • Ludwig Schultz;Alberto Bollero;Axel Handstein;Dietrich Hinz;Karl-Hartmut Muller;Golden Kumar;Juergen Eckert;Oliver Gutfleisch;Anke Kirehner Aru Yan
    • Journal of Powder Materials
    • /
    • v.9 no.6
    • /
    • pp.381-393
    • /
    • 2002
  • Recent developments in nanocrystalline and nanocomposite rare earth-transition metal magnets are reviewed and emphasis is placed on research work at IFW Dresden. Principal synthesis methods include high energy ball milling, melt spinning, mold casting and hydrogen assisted methods such as reactive milling and hydrogenation-disproportionation-desorption-recombination. These techniques are applied to NdFeB-, PrFeB- and SmCo-type systems with the aim to produce high remanence magnets with high coercivity. Concepts of maximizing the energy density in nanostructured magnets by either inducing a texture via anisotropic HDDR or hot deformation or enhancing the remanence via magnetic exchange coupling are evaluated. With respect to high temperature applications melt spun $Sm(Co_{0.74}Fe_{0.1}Cu_{0.12}Zr_{0.04})_{7.5}$ ribbons were prepared, which showed coercivities of up to 0.53 T at 50$0^{\circ}C$. Partially amorphous $Nd_{60}Fe_xCo_{30-x}Al_{10}(0{\leq}x{\leq}30)$ alloys were prepared by copper mold casting. The effect of transition metal content on the glass-forming ability and the magnetic properties was investigated. The $Nd_{60}Co_{30}Al_{10}$ alloy exhibits an amorphous structure shown by the corresponding diffraction pattern. A small substitution of Co by 2.5 at.% Fe results In the formation of Fe-rich crystallites embedded in the Nd-rich amorphous matrix. The Fe-rich crystallites show hard magnetic behaviour at room temperature with a coercivity value of about 0.4 T, relatively low saturation magnetization and a Curie temperature of 500 K.

Study on the HDDR Characteristics of the Nd-Fe(-Co)-B(-Ga-Zr)-type Alloys

  • Shon, S.W.;Kwon, H.W.;Kang, D.I.;Kim, Yoon.B.;Jeung, W.Y.
    • Journal of Magnetics
    • /
    • v.4 no.4
    • /
    • pp.131-135
    • /
    • 1999
  • The HDDR characteristics of the Nd-Fe-B-type isotropic and anisotropic HDDR alloys were investigated using three types of alloys: alloy A $(Nd_{12.6}Fe_{81.4}B_6), alloy B (Nd_{12.6}Fe_{81.3}B_6Zr_{0.1}), and alloy C (Nd_{12.6}Fe_{68.8}Co_{11.5}B_6Ga_{1.0}Zr_{0.1}$). The alloy A is featured with the isotropic HDDR character, while alloy B and C are featured with the anisotropic HDDR character. Hydrogenation and disproportionation characteristics of the alloys were examined using DTA under hydrogen gas. Recombination characteristics of the alloys were examined by observing the coercivity variation as a function of recombination time. The present study revealed that the alloy C exhibits slightly higher hydrogenation and disproportionation temperatures compared to the alloy A and B. Recombination of the anisotropic alloy B and C takes place more rapidly with respect to the isotropic alloy A. The intrinsic coercivities of the recombined materials rapidly increased with increasing the recombination time and then showed a peak, after which the coercivities decreased gradually. The degraded coercivity was, however, recovered significantly on prolonged recombination treatment. Compared with the isotropic HDDR alloy A the anisotropic HDDR alloy B and C are notable for their greater recovery of coercivity. The significant recovery of coercivity was accounted for the in terms of the development of well-defined smooth grain boundary between the recombined grains on prolonged recombination.

  • PDF

Magnetic Properties of Hot Press and Die-Upset Nd-Fe-B-Co Magnets (Hot Press 및 Die-Upset 법에 의해 제조된 Nd-Fe-B-Co 자석의 자기적 특성)

  • Lee, K.S.;Kim, Y.S.;Suh, S.J.;Park, H.S.;Park, C.
    • Journal of the Korean Magnetics Society
    • /
    • v.7 no.1
    • /
    • pp.49-54
    • /
    • 1997
  • The effect of Co and annealing temperature on the magnetic properties, phase change and microstructure of melt-spun $(Nd_{14.73}Fe_{78.67}B_{6.60})_{100-x}Co_x$ (X=0, 1, 2, 3) ribbons has been studied. The Co containing ribbons were found to have higher coercivity ($_iH_c$) than the ribbons without Co. Intrinsic coercivity of 20.3 kOe has been obtained by addition of 2 at%Co. This effect by Co addition is also represented in the case of hot pressed and die-upseted magnets. The maximum intrinsic coercivities of hot press and die-upset $(Nd_{14.73}Fe_{78.67}B_{6.60})_{100- x}Co_x$ (X=0, 1, 2, 3) magnets are 16.9 kOe and 15.2 kOe when X=2.

  • PDF

Study in Magnetizing the NdFeB Magnet which is inserted in a Squirrel Cage Rotor (영구자석 매입형 유도성 기동 동기전동기의 조립후 착자에 대한 연구)

  • Lee, C.G.;Kwon, B.I.;Woo, K.I.;Han, M.K.
    • Proceedings of the KIEE Conference
    • /
    • 2001.10a
    • /
    • pp.27-29
    • /
    • 2001
  • In this paper, we study in magnetizing the NdFeB magnet which is inserted in a squirrel cage rotor. The inserted NdFeB magnet need much more magnetizing flux than that of ferrite magnet. Also the eddy current flowing in rotor bar disturbs the magnetizer in magnetizing the NdFeB magnet. The existing magnetizing yoke is designed by increasing the coil turn. But we recognize that only by increasing the coil turn it is impossible to make NdFeB magnet magnetized fully. Hence, in this paper we propose the method of increasing magnetizing flux by reducing the rotor bar area.

  • PDF