• Title/Summary/Keyword: NdFeB bonded magnet

Search Result 21, Processing Time 0.027 seconds

The development of Dy free MAGFINE and its applications to Motors

  • Honkura, Yoshinobu
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2013.12a
    • /
    • pp.95-95
    • /
    • 2013
  • The NdFeB magnet can be classified into the sintered magnet and bonded magnet. The former has superior magnet characteristics but the degree of freedom in shape is highly restricted, whereas the latter has a high degree of freedom, but its magnet characteristics are inferior to the former. When a NdFeB magnet is used at the elevated temperature, part of Nd must be replaced with a high priced Dy to increase its coercive force. For these reasons, a Dy free and high performance NdFeB bonded magnet is desired strongly. The author successfully developed a Dy free NdFeB anisotropic bonded magnet based on discovery of new phenomena called as d-HDDR reaction and its mass production process such as a thermally balanced hydrogen reaction furnace, micro capsuled powder, compression molding / injection molding under magnetic field, magnetic die and so on. Applied to DC brush seat motor for automotive use, the motor has become 50% small in size and weight. The commercialization of a half sized motor for automotive use has been realized up to the market share of 30%. At present, its commercialization is extending to various types of motors such as power tool, ABS motor, wiper motor, window motor, electric bike power motor, and compressor motor. It is expected that the applications will be increasingly enlarged to EV motor, wind generator, EPS motor, washing machine, and glass cutting machine. This innovative technology has realized Dy free high performance magnet and mudt make big contribution to not only rare element strategies but also energy conservation.

  • PDF

Microstructure and Magnetic Properties of $Nd_2Fe_{14}B/{\alpha}-Fe$ Nanocomposite Prepared by HDDR Combined with Mechanical Milling

  • Hu, Lianxi;Wang, Erde;Guo, Bin;Shi, Gang
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1286-1287
    • /
    • 2006
  • [ $Nd_2Fe_{14}B/{\alpha}-Fe$ ] nanocomposite powders with a nominal composition of $Nd_{12}Fe_{82}B_6$ were prepared by HDDR combined with mechanical milling. The microstructure was studied by Mossbauer spectrometry and TEM. The magnetic properties were investigated by VSM using bonded magnet samples. The results showed that the annealing temperature had significant influence on both the recombination kinetics and the grain size of the $Nd_2Fe_{14}B$ and ${\alpha}-Fe$ phases, and the bonded magnets presented the best magnetic properties when the nanocomposite powders were prepared by annealing at $760^{\circ}C$ for 30 min.

  • PDF

Study on Organic Binder for Anisotropic Rare-Earth Bonded Magnets (이방성 희토류 본드자석용 유기 바인더에 관한 연구)

  • Heo, Jeong-Sub;Cho, Yeon-Hwa;Nam, Sung-Cheol;Kim, Ji-Kyeong;Lee, Jung-Goo;Yu, Ji-Hoon
    • Journal of the Korean Magnetics Society
    • /
    • v.24 no.3
    • /
    • pp.86-89
    • /
    • 2014
  • Anisotropic bonded magnet is composed of magnetic powder and organic binder. organic binder in bonded magnet, serves to orientation of the powder. organic binder is composed of polymer resin, lubricant, hardener and coupling agent, etc.in this study, selection of the various components to producing an organic binder and by adjusting the composition ratio and concentrate, apply to bonded magnet for producing an organic binder that suitable for magnetic powder. so evaluation of magnetic properties and mechanical properties, the organic binder ratio and component was confirmed to suitable for bonded magnet.

A Study on the Isotropic Nd$_2$Fe$_{14}$B/Epoxy Bonded Magnets with High Characteristics (고특성 등방성 Nd$_2$Fe$_{14}$B/에폭시 본드자석의 연구)

  • 조태식;정원용
    • Polymer(Korea)
    • /
    • v.26 no.1
    • /
    • pp.98-104
    • /
    • 2002
  • This study was investigated to fabricate the isotropic $Nd_2Fe_{14}B$/epoxy bonded magnets with high characteristics paroduced by compression molding. The magnetic characteristics of the bonded magnets were directly proportional to the density of the magnets and were enhanced by using raw $Nd_2Fe_{14}B$ magnetic powders, having the mean particle size of $200{\mu} m$.without additional milling process. The high characteristics of the bonded magnets were achieved at the following conditions: epoxy resin of 2.0 wt%, silane coupling agent of 0.8 wt%, curing agent of 0.7 wt% on the base of magnetic powders, and curing condition of $150^{\circ}C$/3 hrs. The bonded magnets at the optimum conditions indicated the high characteristics such as the density of 6.1 g/㎤, the remanent flux density of 7.1 kG, the maximum energy product of 9.7 MGOe, and the compressive strength of 17 kg/$mm^2$.

Study of the Enhancement of Magnetic Properties of NdFeB Materials Fabricated by Modified HDDR Process

  • Fu, Meng;Lian, Fa-zeng;Wang, jie-Ji;Pei, Wen-Ii;Chen, Yu-lan;Yang, Hong-cai
    • Journal of Magnetics
    • /
    • v.9 no.4
    • /
    • pp.109-112
    • /
    • 2004
  • The HDDR (Hydrogenation-Disproportionation-Desorption-Recombination) process is a special method to produce anisotropic NdFeB powders for bonded magnet. The effect of the modified HDDR process on magnetic properties of $Nd_2Fe_{14}B$-based magnet with several composition $Nd_{11.2}Fe_{66.5-x}Co_{15.4}B_{6,8}Zr{0.1}Ga_x(x=0{\sim}1.0)$ and that of microelement Ga, disproportional temperature and annealing temperature on $_jH_c$, grain size were investigated in order to produce anisotropic powder with high magnetic properties. It was found that modified HDDR process is very effective to enhance magnetic properties and to fine grain size. The addition of Ga could change disproportionation character remarkably of the alloy and could improve magnetic properties of magnet powder. Increasing annealing temperature induces significant grain growth. And grain size produced by modified HDDR process is significantly smaller than those produced by conventional HDDR process.

Study on the Interaction of Compound Bonded Magnets

  • Chang, Ying;Ma, Nuo;Yu, Xiaojun;Lian, Fazeng;Li, Wei
    • Journal of Magnetics
    • /
    • v.9 no.4
    • /
    • pp.105-108
    • /
    • 2004
  • The attempt for the addition of double-phase nanocomposite $Nd_2Fe_{14}BFe_3B$ powders, respectively, into several $RE_2Fe_{14}B$(RE=Pr, Nd) powders with high magnetic properties was carried out. The powders were compounded and compressed to take shape bonded magnets. By means of investigating the variation of compound magnet $B_r$, the interaction between magnetic powders was revealed. The result shows that not chemical just but physical interaction exists between elements. The compound effect of $Nd_2Fe_{14}BFe_3B$-ferrite bonded magnets was detailed studied. The functional relation was revealed between magnetic properties and ferrite content. That is $Y = 5.42 x^2 -11.34x + 6.62$. The variation of $_iH_c$ temperature coefficient ${\beta}_{iHc}$ with ferrite content was investigated. Following the ferrite content increased, ${\beta}_{iHc}$ and $h_{irr}$ were obviously decreased, compression-resistant strength was enhanced.

Effects of Nd Addition to Sr Ferrite Bonded Magnet (Sr 페라이트 본드자석의 Nd 첨가효과)

  • 정왕일;진성빈;강재덕;신용진
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1997.11a
    • /
    • pp.120-123
    • /
    • 1997
  • In this paper, we deal with the effect on magnetic properties when Nd is added to Sr ferrite bonded magnet. First, we choose SrO$_{n}$.Fe$_2$O$_3$(n=5.9), which is nonstoichiomatric composition, as specimen ferrite. Then, we add 5wt% polyvinyl alcohol and calcinate at 12$25^{\circ}C$ under $N_2$ environment for carbon coating on chemical compound specimen. After that we obtain 1.2${\mu}{\textrm}{m}$ single domain powder through grinding process for 18 hours. The single domain Sr ferrite Powder is well mixed with silage coupling and calcium stearate of 1wt% Then, it is kneaded by using polyamide12 as a binder and is pelleted. After adding Nd-Fe-B powder to the pelleted specimen, we injection-mould it under magnetic field by using anisotropic mould. Especially, when we add l3wt% Nd-Fe-B powder to the polyamide12, we obtain excellent magnetic propertiecs which are $_{B}$H$_{C}$=2.65KOe, Br=3.16KG and (BH)$_{max}$=2.61MGOeOeOeOeOe

  • PDF

Rare Earth Dispute and Trend in Development of NdFeB Anisotropic Bonded Magnets (희토류 자원분쟁과 NdFeB계 이방성 본드자석 개발동향)

  • Kim, H.J.;Kim, S.M.
    • Journal of the Korean Magnetics Society
    • /
    • v.22 no.3
    • /
    • pp.109-115
    • /
    • 2012
  • NeFeB anisotropy bonded magnet has proposed a new paradigm of weight reduction of small motors by replacing the conventional ferrite permanent magnets with its high magnetic property of 25 MGOe during last five years. It has also advanced by leaps and bounds in the field of motor industry for automobiles and electric power tools. And it has led a new innovation of fifty percent weight lightening compared to its current motors by correctly focusing on fuel performance improvement through weight lightening that automobile industry chased. There was, however, another price skyrocketing in 2011 after China had announced its export regulation in rare earth materials in July, 2010. And this price change has an extensive impact on the industries that consume rare earth magnets. This environmental change has caused technical challenge to improve the performance by using least amount of rare earth elements in NdFeB anisotropy bonded magnets, and led to make a new technical approach to a new applied field. In this article, we will show how each nation deals with this industrial issue, and introduce development trend and application of anisotropic NdFeB bonded magnets, so-called MAGFINE made by Aichi Steel Corp.