• Title/Summary/Keyword: Nd-Sr isotope

Search Result 28, Processing Time 0.018 seconds

Nd-Sr Isotope and Gas Composition for the Sangdong Granites Related to the Tungsten-Molybdenum Ore Mineralization (상동 중석-몰리브덴 광상의 광화관련 상동화강암의 Nd-Sr 동위원소비 및 가스 성분)

  • Kim, Kyu Han;Shin, Yu Hee
    • Economic and Environmental Geology
    • /
    • v.28 no.2
    • /
    • pp.139-145
    • /
    • 1995
  • Tungsten skarn mineralization of the Sangdong mine is localized in the interbedded limestone layers of the Myobong Slate Formation and in the limestone of the Pungchon Limestone Formation of Cambrian age. Fluid inclusion, gas composition and Nd-Sr isotope for granites and skarns have been investigated. Gas compositions show $CO_2$ rich in the Sangdong granite and CH, rich in the Nonggeori and Eopyeong granites. The initial $^{87}Sr/^{86}Sr$ and $^{143}Nd/^{144}Nd$ ratios of the Sangdong granites have 0.714~0.716(${\varepsilon}_{Sr}$=138~162) and 0.51173~0.51178(${\varepsilon}_{Nd}$=-14.4~15.5), respectively. And their two stage model ages range from 1687 to 1764 Ma. The granite characterized by high strontium initial ratios and negative eNd value could have originated from the old continental crust source. Low homogenization temperature of the Sangdong granite having $203{\sim}296^{\circ}C$ with 1.9~9.2 NaCl equiv. wt% indicates the post-magmatic hydrothermal alteration temperature. Skarn ore fluid responsible for tungsten mineralization has been evolved from CH, rich fluid of early pyroxene garnet skarn to $CO_2$ rich later quartz-mica skarn.

  • PDF

Sr-Nd-Pb Isotopic Study of the Ogcheon Amphibolites (옥천 각섬암의 Sr-Nd-Pb 동위원소 연구)

  • Lee, Kwang-Sik;Chang, Ho-Wan
    • Economic and Environmental Geology
    • /
    • v.29 no.1
    • /
    • pp.35-43
    • /
    • 1996
  • Sr-Nd-Pb isotopic results are reported for the Ogcheon amphibolites from the central part of the Ogcheon Belt. Rb-Sr and Pb-Pb whole rock isotope data plot greatly scattered in the isochron diagrams due to later alteration or metamorphism, whereas the Sm-Nd whole rock isotope data define a linear array with an age of $1270{\pm}220$ Ma ($1{\sigma}$). Considering several geochemical features of the amphibolites, the 1270 Ma linear array may be not a true but an apparent mixing isochron due to source heterogeneity.

  • PDF

Rb-Sr Isochron Ages, Sr and Nd Isotopic Compositions of Granophyre in the Haenam-Wando Areas, Korea (해남-완도지역 Granophyre의 Rb-Sr 등시선 연대와 Sr, Nd 동위원소 조성)

  • Shin, In-Hyun;Kagami, Hirro
    • Economic and Environmental Geology
    • /
    • v.29 no.2
    • /
    • pp.151-158
    • /
    • 1996
  • Rb-Sr isochron ages, Sr and Nd isotopic compositions were determined for late Cretaceous granophyre on the Haenam-Wando areas, the southwestern part of the Yeongdong-Kwangju depression in Korea. The granophyre in the Haenam-Wando areas are distributed in the shape of a resurgent cauldron. Five samples of Haenam granophyre give a defined Rb-Sr whole rock isochron age of $75.7{\pm}7.2Ma$ and Sr initial ratio of $0.70826{\pm}0.00020(2{\sigma})$. Plagioclase, orthoclase and whole rock of Haenam granophyre give a defined Rb-Sr whole rock-mineral isochron age of $67.0{\pm}5.8Ma$ and Sr initial ratio of $0.708880{\pm}0.00028(2{\sigma})$. Five samples of Wando granophyre give a defined Rb-Sr whole rock isochron age of $70.6{\pm}3.3Ma$ and Sr initial ratio of $0.70850{\pm}0.00088(2{\sigma})$. Eight samples of Haenam granophyre give a defined Nd isotope ratios of 0.512180~0.512259 and ${\varepsilon}Nd$ (T) values of -6.53~-8.15, ${\varepsilon}Sr$ (T) values of +51.49~+66.48 and model age of 1.28~1.60 Ga. Four samples of Wando granophyre give a defined Nd isotope ratios of 0.512228~0.512289 and ${\varepsilon}Nd$ (T) values of -6.74~-8.00, ${\varepsilon}Sr$ (T) values of +54.88~+78.98 and model age of 1.14~1.42 Ga.

  • PDF

patterns and crust - mantle interactio

  • Du, Y.
    • Proceedings of the KSEEG Conference
    • /
    • 2000.04a
    • /
    • pp.110-110
    • /
    • 2000
  • Temporal and spatial distribution patterns of the magmatic rocks and associated ore deposits in the Mesozoic magmatic - metallogenic belt along the Yangtz River, Anhui Province are used to determine and discuss the crust - mantle interaction processes. The magmatic rocks are Cu - Au mineralized high - K calc - alkalic intermediate ¬acidic (CAK) and Fe - Cu mineralized high - Na alkalic - calc intermediate - basic intrusive rocks (FCN) in the central part of the belt and grade to Cu - Mo - Pb - Zn - Ag mineralized calc - alkalic granitoids (CMG) and A - type granites (AG) in the southern and northern parts of the belt. Samples from the CAK and CMG yield Rb - Sr isochron ages of 137 - 140Ma with $(^{87}Sr/^{86}Sr)_{o}$ = 0.7060 - 0.7101, while those from the FCN and AG yield the ages of 120 - 129Ma with $(^{87}Sr/^{86}Sr)_{o}$ = 0.7047 - 0.7077. The Sr isotope ratios, CriTh ratios 0.4 - 3.1), Eu/Eu* ratios < 0.79 - 1.05) and initial epsilon (Nd) values (-16.6 - -6.3) for the CAK and CMG are consistent with magma derivation from old metamorphic basement rocks rich in metallogenic elements through a two - stage process of mantle - derived magma underplating caused by primary lithosphere extension and subsequent partial melting. On the basis of Sr isotope data, CriTh ratios (3.4 - 13.8), Eu/Eu* ratios (0.86 - 1.13) and initial epsilon (Nd) values (-7.7 - +1.4), the FCN and AG are considered to be formed through syntexis with material input from the mantle that resulted from further lithosphere extension followed by mantle - derived magma underplating on a large scale.

  • PDF

Geochemistry and Sm-Nd isotope systematics of Precambrian granitic gneiss and amphibolite core at the Muju area, middle Yeongnam Massif (영남육괴 중부 무주 지역에 위치하는 선캠브리아기 화강편마암 및 앰피볼라이트 시추코아의 Sm-Nd 연대 및 지구화학적 특징)

  • Lee Seung-Gu;Kim Yongje;Kim Kun-Han
    • The Journal of the Petrological Society of Korea
    • /
    • v.14 no.3 s.41
    • /
    • pp.127-140
    • /
    • 2005
  • The Samyuri area of Jeoksang-myeon, Muju-gun at the Middle Yeongnam Massif consists of granitic gneiss, porphyroblastic gneiss and leucocratic gneiss, which correspond to Precambrian Wonnam Series. Here we discuss a geochemical implication of the data based on major element composition, trace element, rare earth element (REE), Sm-Nd and Rb-Sr isotope systematics of the boring cores in the granite gneiss area. The boring cores are granitic gneiss (including biotite gneiss) and amphibolite. The major and trace element compositions of granitic gneiss and amphibolite suggest that the protolith belongs to TTG (Tonalite-Trondhjemite-Granodiorite) and tholeiitic series, respectively. Chondrte-normalized REE patterns vary in LREE, HREE and Eu anomalies. The granitic gneiss and amphibolite have Sm-Nd whole rock age of $2,026{\pm}230(2{\sigma})$ Ma with an initial Nd isotopic ratio of $0.50979{\pm}0.00028(2{\sigma})$ (initial ${\epsilon}_{Nd}=-4.4$), which suggests that the source material was derived from old crustal material. Particularly, this initial ${\epsilon}$ Nd value belongs to the range of the geochemical evolution of Archean basement in North-China Craton, and also corresponds to the initial Nd isotope evolution line by Lee et al. (2005). In addition, chondrite-normalized REE pattern and initial Nd value of amphibolite are very similar to those of juvenile magma in crustal formation process.

Nd and Sr Isotopes and K-Ar Ages of the Granitic and Rhyolitic Rocks from the Bupyeong Silver Mine Area (부평 은광산 지역의 유문암질암의 화강암류의 K-Ar연령과 Nd, Sr 동위원소)

  • Kim, Kyu Han;Tanaka, Tsuyoshi;Nagao, Keisuke
    • Economic and Environmental Geology
    • /
    • v.31 no.2
    • /
    • pp.149-158
    • /
    • 1998
  • Volcanic rocks including rhyolitic tuff, rhyolite and welded tuff in the Bupyeong silver mine area form a topographic circular structure known as a resurgent caldera. Granitic rocks are emplaced inside and outside area of the circular structure. K-Ar dating and Nd-Sr isotope studies were carried out to invesitigate the origin and petrogenetic evolution of the rhyolitic and granitic magma in the Bupeong silver mine area. Whole rock K-Ar age ranges from 208 to 131 Ma for rhyolitic rocks. Radiometric ages for the granitic rocks are 167.6 Ma for pink feldspar biotite granite from inside granitic pluton of the circular volcanic body, 178.8 Ma for the Kimpo hornblende biotite granite and 111.8 Ma for the Songdo foliated granite from outside granitic plutons of the volcanic body. The radiometric age data indicates that the volcanic activities which are partly overlapped by granite plutonic activities in the Bupyeong mine area had recorded early Jurassic and early Cretaceous in age. Initial Sr and Nd isotopic ratios of the rhyolitic rocks ($^{87}Sr/^{86}Sr$=0.710~0.719 and $^{143}Nd/^{144}Nd$=0.5115~0.5118) are similar to those of granitic rocks ($^{87}Sr/^{86}Sr$=0.709~0.716 and $^{143}Nd/^{144}Nd$=0.5115~0.5116) from inside granite stock. This means that similar source materials of felsic magma responsibles for the Bupyeong volcanic rocks and inside plutonic rocks. Based on the Nd and Sr isotopic compositions, rhyolitic and granitic magmas in the Bupyeong area originated from the partial melting of the old continental crust which has Nd model age ranging from 1500 to 2900 Ma. This is analogous to those of the other Jurassic granitoids in South Korea.

  • PDF

Precambrian Kyeonggin gneiss complex (선캠브리아 경기육괴 중 대리암의 연대측정에 대한 예비연구)

  • 박계헌;정창식
    • The Journal of the Petrological Society of Korea
    • /
    • v.2 no.2
    • /
    • pp.130-138
    • /
    • 1993
  • Kyeonggi Gneiss complex forming Korean Precambrian basement is mainly composed of high-grade metasedimentary rocks, which are generally difficult to determine their absolute ages. We examined the feasibility of successive absolute age determination method for the marbles from this basement. We used hydrochloric acid for the selective dissolution of carbonate minerals from the marbles. Trace element analysis shows that most of Zr and Rb are concentrated in the residues. U in the residue is more abundant than that in HC1-dissolved parts. Pb, Sr, Sm, and Nd are somewhat evenly distributed between HC1-dissolved parts and the residues. }Th shows rather complex behavior. Sr isotopic compositions of the HC1-dissolved parts reveal mixing with Sr from non-carbonate minerals having much higher $^{87}Sr/^{86}Sr$ ratios. We suggest that the most reliable method in the age determination for the marbles of this area is measuring Pb isotopic ratios of the pieces of pure marbles.

  • PDF

Sr, Nd and Pb isotopic investigations of ultramafic xenoliths and their host basalts from Jeju Island, Baekryeong Island, Boeun and Ganseong, Korea: Implications for a large-scale difference in the source mantle beneath East Asia

  • Park, Seong-Hee;Kwon, Sung-Tack;Hee Sagong;Cheong, Chang-Sik
    • Proceedings of the Mineralogical Society of Korea Conference
    • /
    • 2001.06a
    • /
    • pp.75-75
    • /
    • 2001
  • We report Sr, Nd and Pb isotope data of clinopyroxene separates from ultramafic xenoliths and their host basaltic rocks in Jeju Island, Baekryeong Island, Boeun and Ganseong, Korea. The isotopic data of the xenoliths and host basalts are distinctly different from those of Korean basement rocks. Except for two xenoliths from Ganseong, all samples in this study have isotopic ratios within the combined range of MORB-OIB data. All basaltic rocks have Nd-Sr-Pb isotope compositions different from those of xenoliths, indicating that the host basaltic magma did not derive from the lithospheric mantle where the xenoliths originated. The range of isotopic composition of xenoliths is much greater than that observed in host basalts, which reflects small-scale heterogeneity of the lithospheric mantle. The greater isotopic heterogeneity of the lithospheric mantle probably reflects its long-term stability. The spinel peridotite xenolith data of Jeju Island, Baekryeong Island and Boeun display mixing hyperbolas between DMM and EM II end members. Since Jeju basalts have EM II-like isotopic signature, the mixing relationship shown by the isotopic data of the Jeju xenoliths can be interpreted as the result of infiltration of metasomatic fluid or melt derived from basaltic magma into DMM-like lithospheric mantle. In contrast to other xenolith sites, the Ganseong xenoliths are dominantly clinopyroxene megacryst and pyroxenite. Clinopyroxene megacrysts have different isotopic ratios from their host basalt, reflecting its exotic origin. Two Ganseong xenoliths (wherlite and clinopyroxenite) have much enriched Sr and Nd isotopic ratios and Nd model ages of 2.5-2.9 Ga, and plot in an array away from the MORB-OIB field. The mantle xenoliths from Korean Peninsula have similar $\^$87/Sr/$\^$86/Sr,$\^$143/Nd/$\^$144/Nd and $\^$207/Pb/$\^$204/Pb ratios to, but higher $\^$208/Pb/$\^$204/Pb ratios than, those from eastern China, indicating that Korean xenoliths are derived from the lithospheric mantle with higher Th/U ratio compared with Chinese ones. The isotopic data of xenolith-bearing basalts of Baekryeong Island and Ganseong, along with Ulreung and Dok Islands, show a mixing trend betlveen DMM and EM I in Sr-Nd-Pb isotopic correlation diagrams, which is also observed in tile northeastern Chinese basalts. However, the Jeju volcanic rocks show an EM II signature that is observed in southeastern Chinese basalts. The isotopic variations in volcanic rocks from the northern and southern portions of the East Asia reflect a large-scale isotopic heterogeneity in their source mantle.

  • PDF