• Title/Summary/Keyword: Nd Magnet

Search Result 264, Processing Time 0.024 seconds

Study on Shear Strength Characteristic of Steel Particle-sand Mixture Influenced by Magnetic Force (자기력이 적용된 철가루 혼합 사질토의 전단강도특성 연구)

  • Cho, Joong-Ki;Chang, Pyeong-Wook;Kim, Seong-Pil;Heo, Jun
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.49 no.6
    • /
    • pp.87-92
    • /
    • 2007
  • Strain-stress behavior of soil is of importance in dealing with geo-techniques which relate to bearing capacity, slope stability, earth pressure and many geo-technical problems. So understanding mechanism of the behavior and reinforcing soil to the required state has been an issue for many years. This paper presents the possibility of magnetic force in enhancing shear strength. To analyze the reinforcing effect, triaxial compression tests were performed on two sets of steel-sand mixtures, one of which is influenced by permanent magnet, NdFeB. With magnetic force under 50 kPa confining pressure, maximum shear strengths increased according to steel percentages but under 100 kPa, no significant changes in maximum shear strengths occurred. Therefore the analysis by Mohr's circles indicates that magnetic force converts the shearing characteristics of sand into those of clay.

Superconductivity and physics (초전도와 물리학)

  • 오범환
    • Electrical & Electronic Materials
    • /
    • v.9 no.3
    • /
    • pp.304-309
    • /
    • 1996
  • 본 고에서는 초전도에 관한 학문적 연구내용의 추이와 그 응용기술의 개발내용을 간략히 살펴보았다. 고온 초전도의 형성원리에 대한 학문적 관심과 응용기술 개발사이의 괴리를 이해하려는 노력의 일환으로 고온 초전도체를 주대상으로 한 각종 연구결과들을 소개하면서 순수학문과 공학기술과의 긴밀한 연관성을 찾았다. 전자와 정공의 도핑 대칭성을 확립한 Nd-Ce-Cu-O의 발견은 물성의 정확한 이해에 기초한 성공이었고, 산화물 고온 초전도체들의 전자쌍 파동함수의 대칭성에 관한 논의들에서 최근 연구의 주종을 이루고 있는 Josephson-coupling과 Photoemission등의 직관적인 결과를 주는 측정 실험들은 고도의 첨단기술과 죠셉슨 접합 등의 새로운 초전도 물성개념의 정확한 이해를 요하는 연구들이었다. 이러한 새로운 초전도 개념들의 토대위에 현 응용분야들의 추세를 대략 살핌으로써 부실하나마 미래의 차원 높은 수요에 대비한 학문적, 기술적 준비를 시도해 보았다.

  • PDF

A Levitation Controller Design for a Magnetic Levitation System (자기부상 시스템의 부상제어기 설계)

  • 김종문;강도현;박민국;최영규
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.52 no.6
    • /
    • pp.342-350
    • /
    • 2003
  • In this paper, a levitation controller for a magnetic levitation(MagLev) system is designed and implemented. The target to be controlled is PEM(permanent and electromagnet) type with 4-corners levitation which is open-loop unstable, highly non-linear and time-varying system. The digital control system consists of a VME-based CPU board, AD board, PU board, 4-Quadrant chopper, and gap sensor, accelerometer as feedback sensors. In order to estimate the velocity of the magnet, we used 2nd-order state observer with acceleration and gap signal as input and output, respectively. Using the estimated states, a state feedback control law for the plant is designed and the feedback gains are selected by using the pole-placement method. The designed controller is experimentally validated by step-type gap reference change and force disturbance test.

Realization of High Performance Pickup Actuator using Multipolar Flux-Density Distribution (다 극성 자속 분포 효과를 이용한 Actuator 고 특성 실현)

  • In-Ho CHOI;Sam-Nyol HONG;Jin-A Kim;Kwan-Woo PARK;Young-Joong KIM;Jin-Yong KIM
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11a
    • /
    • pp.358.2-358
    • /
    • 2002
  • To improve the driving sensitivity of an optical pickup actuator for high density and high speed drive, we present a new actuator design using multipolar flux-density distribution by magnetic materials and Nd-Fe-B sintered magnets. We expect this actuator to use in 3-axis actuator fur tilt compensation as well as conventional 2-axis actuator. The electromagnetic field analysis applying 3-D FEM was performed and several samples were actually tested. From comparing simulated data with experimental results, we verified theaccuracy of the simulation and the superiority of the presented method.

  • PDF

Design of IPMSM considering demagnetization using Sm2Co17 for urban railway traction application (영구자석 감자를 고려한 사마륨 코발트(Sm2Co17) 자석을 이용한 도시철도차량 견인용 IPMSM의 설계)

  • Park, Moon-soo;Hong, Hyun-seok;Choi, Tae-jun;Ham, Sang-hwan;Lee, Ju
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.900-901
    • /
    • 2015
  • 본 논문은 210kW급 도시철도차량 견인용 IPMSM(Interior Permanent Magnet Synchronous Motor)의 온도포화를 고려할 경우 사마륨 코발트 영구자석($Sm_2CO_{17}$) 사용의 타당성을 검증하는 논문이다. 기존에 설계되고 있는 Nd 자석과 사마륨 코발트 자석을 비교하고 각각의 자석을 사용한 IPMSM의 특성을 비교한다. 온도 시험은 영구자석 감자를 대비하여 사마륨 코발트 자석을 사용하였고, 전동기 각 상 권선의 온도와 고정자 철심의 온도변화를 시간에 따라 측정하여 전동기의 포화온도를 예측 하였다. 이를 바탕으로 전폐형 공랭식 도시철도차량 견인용 IPMSM의 설계모델을 제안한다.

  • PDF

Projectile's Velocity Effect for Voltage Induced at Sensing Coil for Applying to Air Bursting Munition

  • Ryu, Kwon-Sang;Shin, Jun-Goo;Jung, Kyu-Chae;Son, Derac.
    • Journal of Magnetics
    • /
    • v.18 no.2
    • /
    • pp.90-94
    • /
    • 2013
  • We designed a model composed of a ring type magnet, a yoke, and a sensing coil embedded in a projectile for simulating the muzzle velocity. The muzzle velocity was obtained from the master curve for the induced voltage at sensing coil and the velocity as the projectile pass through the magnetic field. The induced voltage and the projectile's velocity are fitted by the $2^{nd}$ order polynomial. The skin effect difference between projectiles which consist of aluminum-aluminum and aluminum-steel was small. The projectile will surely be burst at the pre-determined target area using the flight time and the projectile muzzle velocity calculated from the voltage induced at the sensing coil on the projectile.

Non-destructive Testing and Numerical Analysis for Ferromagnetic Plates using Magnetic Flux Leakage Method (강자성체 평판의 자속 누설 탐상 비파괴 실험 및 수치해석)

  • Kim, Sean;Lee, Hyang-Beom
    • Proceedings of the KIEE Conference
    • /
    • 2001.04a
    • /
    • pp.126-128
    • /
    • 2001
  • In this paper, Magnetic Flux Leakage(MFL) method is used to detect surface defect in ferromagnetic plate. Surface defects are created on the SM 45C ferromagnetic plate and magnetizing equipment is composed to perform MFL nondestructive testing. The length and width of defect is twice the thickness of ferromagnetic plate, and defects with different depths are made artificially for the experiment. Also, NdFeB magnet in magnetizing equipment is used to make magnetic flux. This paper shows that it is possibile to detect 10% defect and to analyze numerically for any defect using MFL method.

  • PDF

Optimal Design of Brushless DC Motor for servo drive (서보용 BLDC전동기의 최적설계에 관한 연구)

  • Kim, Jung-Chul;Park, Yong-Il;Cho, Yun-Hyun;Im, Tae-Bin;Seung, Ha-Kyoung
    • Proceedings of the KIEE Conference
    • /
    • 1998.07a
    • /
    • pp.179-182
    • /
    • 1998
  • This paper is proposed a selection method of the major design dimension which constrain the maximum acceleration capability and minimum power loss of surface-mounted brushless do motor with NdFeB permanent magnet for servo drives. Expressions are derived from the air-gap flux density and the linear current density around the stator periphery and design dimensions. The linear current density is limited by the need to avoid demagnetization. In this paper, We compute the optimum design dimensions of 2KW BLDC motor with maximum acceleration capability and minimum power loss by using genetic algorithm.

  • PDF

Fabrication of a Low Frequency Vibration Driven Electromagnetic Energy Harvester Using FR-4 Planar Spring and Its Characteristics (FR-4 평판 스프링 기반 저주파수용 진동형 전자기식 에너지 하베스터의 제작과 그 특성)

  • Lee, Byung-Chul;Chung, Gwiy-Sang
    • Journal of Sensor Science and Technology
    • /
    • v.20 no.4
    • /
    • pp.238-242
    • /
    • 2011
  • This paper describes the fabrication and characteristics of a low frequency vibration driven electromagnetic energy harvester. The fabricated generator consists of a permanent magnet of NdFeB, a FR-4 planar spring and a Copper cylinder type coil. ANSYS modal analysis was used to determine the resonant frequency for the generator. The implemented generator is capable of producing up to 550 mV peak-to-peak under 7 Hz frequency, which has a maximum power of $95.5\;{\mu}W$ with load resistance of $580\;{\Omega}$. This device is shown to generate sufficient power at different resonating modes, and the experimental and simulated results are discussed and composed.

Design and Analyses of Vibration Driven Electromagnetic Energy Harvester with High Power Generation at Low Frequency (저주파수 진동형 전자기식 마이크로 발전기의 설계 및 해석)

  • Lee, Byung-Chul;Chung, Gwiy-Sang
    • Journal of Sensor Science and Technology
    • /
    • v.20 no.2
    • /
    • pp.102-106
    • /
    • 2011
  • This paper presents a design and analysis of an electromagnetic micro generator which can convert low frequency vibration energy to electrical power. The design aspects of the micro generator comprised planar spring, Cu coil and a permanent magnet(NdFeB). Threetype spring designs and four materials(Parylene, FR-4, Cu and Si) were compared to find resonance frequency. It was found that the resonance frequency will be changed according to the spring shape and material. Mechanical and magnetic parameters had been adjusted to optimize the output power through a comprehensive theoretical study.