• Title/Summary/Keyword: Nd:YAG laser

Search Result 1,019, Processing Time 0.028 seconds

Output characteristics and measurement of the gain coefficient of a pulsed Nd:YAG laser (펄스형 Nd:YAG 레이저의 출력특성과 이득계수 측정)

  • 박대윤
    • Korean Journal of Optics and Photonics
    • /
    • v.10 no.1
    • /
    • pp.53-57
    • /
    • 1999
  • We established the laser oscillator using Nd:YAG crystal grown at Ssang Yong company in Korea and investigated the characteristics of oscillation, Q-switching and wave front of output beam. We measured the single pass gain by controlling the threshold input energy with two output couplers of different output reflectances. Moreover, we compared the gain measured by different output couplers with the gain directly measured by the laser amplifier. The peak power of Q-switching, the pulse width, and the single pass gain coefficient at the threshold energy were 1.5 MW, 30ns, and 0.0958 cm-$^1$ respectively and they were compared with those of the commercial Nd:YAG crystal. Our crystal was proved to be as good as the commercial crystal.

  • PDF

Heat treatment characteristics of medium carbon steel by CW Nd:YAG Laser (CW Nd:YAG 레이저를 이용한 중탄소강의 열처리특성)

  • Shin H.J.;Yoo Y.T.;Ahn D.G.;Im K.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.438-443
    • /
    • 2005
  • Laser surface hardening is an effective technique used to improve the tribological properties and also to increase the service life of automobile components such as camshafts, crankshatfs, lorry brake drums and gears. High power CO2 lasers and Nd:YAG lasers are employed for localized hardening of materials and hence are of potential application in the automobile industries. The heat is conducted rapidly into the bulk of the specimen causing self-quenching to occur and the formation of martensitic structure. In this investigation, the microstructure features occurring in Nd:YAG laser hardening SM45C steel are discussed with the use of optical microscopic and scanning electron microscopic analysis. Moreover, This paper describes the optimism of the processing parameters for maximum hardened depth of SM45C steel specimens of 3mm thickness by using CW Nd:YAG laser. Travel speed was varied from 0.6m/min to 1.0m/min. The maximum hardness and case depth fo SM45C steel are 780Hv and 0.4mm by laser hardening.

  • PDF

Effects of process parameters on kerfwidth and characteristics of the cut surface for the case of cutting of CSP 1N sheet using high power continuous wave Nd:YAG laser (고출력 연속파형 Nd:YAG 레이저를 이용한 CSP 1N 박판재 절단시 공정변수가 절단폭 및 절단표면특성에 미치는 영향)

  • Ahn D.G.;Kim M.S.;Lee S.H.;Yoo Y.T.;Park H.J.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.418-421
    • /
    • 2005
  • The objective of this research work is to investigate the effects of process parameters, such as power of laser, travel speed of laser and material thickness, on kerfwidth and characteristics of the cut surface for the case of cutting of CSP 1N sheet using high power continuous wave Nd:YAG laser. In order to find relationship between the process parameters on the quality of the cut section, such as kerfwidth, surface roughness and the striation formation, several laser cutting experiments are carried out. From the results of experiments, an optimal cutting speed for each cutting condition has been obtained to improve the quality of the cut surface.

  • PDF

Welding Characteristics of Lap-Joint Hastelloy C-276 Sheet Metal Using Nd:YAG Laser (Nd:YAG 레이저를 이용한 하스텔로이 박판의 겹치기 이음 용접 특성)

  • Kim, Chan Kyu;Jung, Yoon Gyo;Cho, Young Tae
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.8
    • /
    • pp.681-685
    • /
    • 2015
  • Hastelloy C-276 composed of Cr, Mo, and Ni is a versatile, corrosion-resistant alloy with numerous industrial applications including its use in nuclear reactors, general chemical plants, and as a superconducting base material. Of especial significance, it can be used as a thin-sheet type whereby lap-joint welding is occasionally necessary. The main welding problems for thin-sheet metals are deformation and burn-through from an excessive heat input. Laser welding can minimize these problems because it has a high energy density and low heat effect on the base material. In this study, the laser-welding characteristics of lap-joint Hastelloy C-276 sheet metal were determined. The criteria of the laser-welding variables were chosen using a heat-conduction analysis, and the optimal welding parameters were selected by experimenting with an Nd:YAG laser.