• 제목/요약/키워드: Nckel silicide

검색결과 1건 처리시간 0.011초

A Study of the Dependence of Effective Schottky Barrier Height in Ni Silicide/n-Si on the Thickness of the Antimony Interlayer for High Performance n-channel MOSFETs

  • Lee, Horyeong;Li, Meng;Oh, Jungwoo;Lee, Hi-Deok
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제15권1호
    • /
    • pp.41-47
    • /
    • 2015
  • In this paper, the effective electron Schottky barrier height (${\Phi}_{Bn}$) of the Ni silicide/n-silicon (100) interface was studied in accordance with different thicknesses of the antimony (Sb) interlayer for high performance n-channel MOSFETs. The Sb interlayers, varying its thickness from 2 nm to 10 nm, were deposited by radio frequency (RF) sputtering on lightly doped n-type Si (100), followed by the in situ deposition of Ni/TiN (15/10 nm). It is found that the sample with a thicker Sb interlayer shows stronger ohmic characteristics than the control sample without the Sb interlayer. These results show that the effective ${\Phi}_{Bn}$ is considerably lowered by the influence of the Sb interlayer. However, the current level difference between Schottky diodes fabricated with Sb/Ni/TiN (8/15/10 nm) and Sb/Ni/TiN (10/15/10 nm) structures is almost same. Therefore, considering the process time and cost, it can be said that the optimal thickness of the Sb interlayer is 8 nm. The effective ${\Phi}_{Bn}$ of 0.076 eV was achieved for the Schottky diode with Sb/Ni/TiN (8/15/10 nm) structure. Therefore, this technology is suitable for high performance n-channel MOSFETs.