• Title/Summary/Keyword: Navigation system error

Search Result 900, Processing Time 0.031 seconds

Influencing factors of low-altitude unmanned aircraft navigation using AHP

  • Ku, SungKwan;An, HyoJung;Lee, DongJin
    • International Journal of Advanced Culture Technology
    • /
    • v.8 no.1
    • /
    • pp.173-181
    • /
    • 2020
  • This study examines whether unmanned aircraft systems (UAS) operated in the context of UAS traffic management (UTM) can be properly operated in its flight environment. In detail, this study examines the influencing navigation factors affecting UASs during flight and examines factors affecting the navigation of UASs under UTM. After deriving various factors affecting navigation, their importance are determined by applying the analytic hierarchy process technique, and the important influencing factors are examined. For low-altitude UAS navigation, errors are classified into navigation-system and flight-technical errors, and a hierarchy is constructed for their sub-factors affecting the influencers. Through this, influencing factors for precise navigation of low-altitude UAS are analyzed, and high importance items are identified.

Performance Analysis of Wide-Area Differential Positioning Based on Regional Navigation Satellite System

  • Kim, Donguk;So, Hyoungmin;Park, Junpyo
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.10 no.1
    • /
    • pp.35-42
    • /
    • 2021
  • The position accuracy of the stand-alone Regional Navigation Satellite System (RNSS) users is more than tens of meters because of various error sources in satellite navigation signals. This paper focuses on wide-area differential (WAD) positioning technique, which is already applied in Global Navigation Satellite System (GNSS), in order to improve the position accuracy of RNSS users. According to the simulation results in the very narrow ground network in regional area, the horizontal position error of stand-alone RNSS is about RMS 11.6 m, and that of RNSS with WAD technique, named the WAD-RNSS, is about RMS 2.5 m. The accuracy performance has improved by about 78%.

A Study on Performance Improvement Method of Fixed-gain Self-alignment on Temperature Stabilizing State of Accelerometers (가속도계 온도안정화 상태에서 고정이득방식 자체정렬의 성능개선 방법에 대한 연구)

  • Lee, Inseop
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.19 no.4
    • /
    • pp.435-442
    • /
    • 2016
  • For inertial navigation systems, initial information such as position, velocity and attitude is required for navigation. Self-alignment is the process to determine initial attitude on stationary condition using inertial measurements such as accelerations and angular rates. The accuracy of self-alignment is determined by inertial sensor error. As soon as an inertial navigation system is powered on, the temperature of accelerometer rises rapidly until temperature stabilization. It causes acceleration error which is called temperature stabilizing error of accelerometer. Therefore, temperature stabilizing error degrades the alignment accuracy and also increases alignment time. This paper suggests a method to calculate azimuthal attitude using curve fitting of horizontal control angular rate in fixed-gain self-alignment. It is verified by simulation and experiment that the accuracy is improved and the alignment time is reduced using the proposed method under existence of the temperature stabilizing error.

A Study on Mobile Robot Posture Error Reduction Using Systematic Odometry Error Correction (Systematic Odometry Error Correction을 이용한 이동로봇의 위치오차 보정)

  • Kang, Hyung-Suk;Lee, Kwae-Hi
    • Proceedings of the KIEE Conference
    • /
    • 1999.11c
    • /
    • pp.655-657
    • /
    • 1999
  • In this paper we will introduce an posture error reduction algorithm for Mobile Robot. We classified odometry error into two categories. and focus on systematic odometry error correction only. Because it is the primary reason for mobile robot navigation. For this procedure we used some robot specifications and modeled robot behavior. Through some experiment, we could obtain new system specs. After modeling, Robot navigation precision was improved.

  • PDF

Performance Analysis of INS/GPS Integration System (INS/GPS 결합방식에 따른 성능분석)

  • Park, Young-Bum;Lee, Jang-Gyu;Park, Chan-Gook
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.2433-2435
    • /
    • 2000
  • Inertial Navigation System(INS) provides short-term accurate navigation solution but its error grows with time due to integration characteristics. Meanwhile, Global Positioning System(GPS) provides long-term stable solution but it has poor error characteristics in high dynamic region. So for its synergistic relationship, an integrated INS/GPS systems has been widely used as an advanced navigation system. Generally, two kinds of integration method are used. One is loosely coupled mode which uses GPS-derived position and velocity as measurements in an integrated Kalman filter. The other is tightly coupled one which uses pseudorange and pseudorange rate as Kalman filter measurements. In this paper the system error models and observation models for two kinds of integrated systems are derived, respectively, and their performance are compared through Monte-Carlo simulations.

  • PDF

Multipath Error Analysis and Scenario Generation for Verifying KRS Environment

  • Cho, Sunglyong;Choi, Heonho;Lee, Byungseok;Nam, Giwook
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.9 no.2
    • /
    • pp.71-77
    • /
    • 2020
  • KRS which is subsystem of Korea Augmentation Satellite System (KASS) performs a role of collecting and monitoring GPS signals. In order to generate the accurate correction message, the site which meets the requirements should be selected and verification to meet each requirement should be accompanied. When the sites are selected, the environmental considerations are EMI, clear horizon (CH) and multipath. Of these, EMI and CH can be checked for satisfaction by instrumentation, but multipath error is difficult to predict. Therefore, multipath error analysis for the installation position of actual antenna at each KRS site should be preceded, and multipath scenario should be generated for each location to analyze the effects of the resulting system performance. In this paper, based on satellite signals collected from each KRS sites, the method for analyzing multipath error in each KRS sites is described, and the multipath error is analyzed. Also to perform an analysis of the effects on system performance due to multipath error, multipath error modeling is performed for the generation of simulation scenarios.

Calibration technique of gimballed inertial navigation system using the velocity error initialization (속도오차 초기화를 이용한 김블형 관성항법시스템의 교정기법)

  • 김천중;박정화;박흥원
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.860-863
    • /
    • 1996
  • In this paper, we formulate the extended Kalman filter for calibration of gimballed inertial navigation system (GINS) at a pure navigation mode with 1500 ft/sec initial velocity and compare its performance to the linear Kalman filter's by using Monte-Carlo analysis method. It has been shown that estimation performance of the extended Kalman filter is better than that of the linear Kalman filter.

  • PDF

Development of a Personal Navigation System Including Activity Monitoring Function (운동량 감시 기능을 포함한 개인항법시스템 개발)

  • Kang, Dong-Youn;Yun, Hee-Hak;Cha, Eun-Jong;Park, Chan-Sik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.2
    • /
    • pp.286-293
    • /
    • 2008
  • The design and implementation of a personal navigation system including activity monitoring function is given in this paper. The system consists of a 3 dimensional MEMS accelerometer, digital compasses and ZigBee communication. An accelerometer and digital compasses are used to compute the position and activity. The obtained position and activity information is transmitted to a fixed beacon via ZigBee. At the same time, activity information is stored in the personal navigation system to a batch analysis program. The step detection algorithm which is robust to attaching location is proposed. Also two digital compass error compensation algorithms are proposed to find more precise headings. The experiments with a real system show that the activities of users and continuous locations less than 1.5m errors are obtained after 80m walking.

A Study on Navigation Performance Analysis Technique of Pseudolite Navigation Systems (의사위성 항법시스템의 항법성능 분석기법 연구)

  • Park, Jun-Pyo;Suk, Jinyoung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.11
    • /
    • pp.947-957
    • /
    • 2014
  • In this paper, the navigation performance analysis techniques of a pseudolite navigation system are proposed. To validate the techniques, operation and navigation test results using real test data are addressed. The conventional navigation performance analysis methods used for satellite navigation system, such as Galileo and GPS, are analyzed to identify the error factor and to check the criterion of UERE defined in the standard document. And then the method to calculate the UERE through the ranging measurements are studied. By identifying the error factor in pseudolite navigation system based on these methods, the available UERE observation and calculation method applicable to pseudolite navigation are proposed. Simulation results considering various circumstances and the actual flight test results are presented to verify the proposed method.

Coordinates Tracking Algorithm Design (표적 좌표지향 알고리즘 설계)

  • 박주광
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.5 no.3
    • /
    • pp.62-76
    • /
    • 2002
  • This paper describes the design of a Coordinates Tracking algorithm for EOTS and its error analysis. EOTS stabilizes the image sensors such as FLIR, CCD TV camera, LRF/LD, and so on, tracks targets automatically, and provides navigation capability for vehicles. The Coordinates Tracking algorithm calculates the azimuth and the elevation angle of EOTS using the inertial navigation system and the attitude sensors of the vehicle, so that LOS designates the target coordinates which is generated by a Radar or an operator. In the error analysis in this paper, the unexpected behaviors of EOTS that is due to the time delay and deadbeat of the digital signals of the vehicle equipments are anticipated and the countermeasures are suggested. This algorithm is verified and the error analysis is confirmed through simulations. The application of this algorithm to EOTS will improve the operational capability by reducing the time which is required to find the target and support especially the flight in a night time flight and the poor weather condition.