• Title/Summary/Keyword: Navigation system error

Search Result 895, Processing Time 0.033 seconds

Error Analysis of the Navigation System with Asynchronous Gyros

  • Kim, Kwang-Jin;Lee, Tae-Gyoo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.177.2-177
    • /
    • 2001
  • The asynchronous gyro outputs in the 3-axis navigation system are defined as each of gyros has its own output frequency. In this case, the navigation system has gyro outputs concurrently with the sensor mechanical frequency instead of the attitude frequency. So, there is an asynchronous error between gyro outputs and attitude calculation. In this paper, we analyze the gyro output error caused by the asynchronous gyro and present the high speed sampling technique and the extrapolation and interpolation of gyro outputs for synchronizing the gyro outputs.

  • PDF

A Study on the Errors in the Free-Gyro Positioning and Directional System (자유자이로 위치 및 방위시스템의 오차에 관한 연구)

  • Jeong, Tae-Gweon
    • Journal of Navigation and Port Research
    • /
    • v.37 no.4
    • /
    • pp.329-335
    • /
    • 2013
  • This paper is to develop the position error equations including the attitude errors, the errors of nadir and ship's heading, and the errors of ship's position in the free-gyro positioning and directional system. In doing so, the determination of ship's position by two free gyro vectors was discussed and the algorithmic design of the free-gyro positioning and directional system was introduced briefly. Next, the errors of transformation matrices of the gyro and body frames, i.e. attitude errors, were examined and the attitude equations were also derived. The perturbations of the errors of the nadir angle including ship's heading were investigated in each stage from the sensor of rate of motion of the spin axis to the nadir angle obtained. Finally, the perturbation error equations of ship's position used the nadir angles were derived in the form of a linear error model and the concept of FDOP was also suggested by using covariance of position error.

Underwater Hybrid Navigation System Based on an Inertial Sensor and a Doppler Velocity Log Using Indirect Feedback Kalman Filter (간접 되먹임 필터를 이용한 관성센서 및 초음파 속도센서 기반의 수중 복합항법 시스템)

  • Lee, Chong-Moo;Lee, Pan-Mook;Seong, Woo-Jae
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.149-156
    • /
    • 2003
  • This paper presents an underwater hybrid navigation system for a semi-autonomous underwater vehicle (SAUV). The navigation system consists of an inertial measurement unit (IMU), an ultra-short baseline (USBL) acoustic navigation sensor and a doppler velocity log (DVL) accompanying a magnetic compass. The errors of inertial measurement units increase with time due to the bias errors of gyros and accelerometers. A navigational system model is derived to include the error model of the USBL acoustic navigation sensor and the scale effect and bias errors of the DVL, of which the state equation composed of the navigation states and sensor parameters is 25 in the order. The conventional extended Kalman filter was used to propagate the error covariance, update the measurement errors and correct the state equation when the measurements are available. Simulation was performed with the 6-d.o.f. equations of motion of SAUV in a lawn-mowing survey mode. The hybrid underwater navigation system shows good tracking performance by updating the error covariance and correcting the system's states with the measurement errors from a DVL, a magnetic compass and a depth senor. The error of the estimated position still slowly drifts in horizontal plane about 3.5m for 500 seconds, which could be eliminated with the help of additional USBL information.

  • PDF

Underwater Hybrid Navigation Algorithm Based on an Inertial Sensor and a Doppler Velocity Log Using an Indirect Feedback Kalman Filter (간접 되먹임 필터를 이용한 관성센서 및 초음파 속도센서 기반의 수중 복합항법 알고리듬)

  • 이종무;이판묵;성우제
    • Journal of Ocean Engineering and Technology
    • /
    • v.17 no.6
    • /
    • pp.83-90
    • /
    • 2003
  • This paper presents an underwater hybrid navigation system for a semi-autonomous underwater vehicle (SAUV). The navigation system consists of an inertial measurement unit (IMU), and a Doppler velocity log (DVL), accompanied by a magnetic compass. The errors of inertial measurement units increase with time, due to the bias errors of gyros and accelerometers. A navigational system model is derived, to include the scale effect and bias errors of the DVL, of which the state equation composed of the navigation states and sensor parameters is 20. The conventional extended Kalman filter was used to propagate the error covariance, update the measurement errors, and correct the state equation when the measurements are available. Simulation was performed with the 6-d.o,f equations of motion of SAUV, using a lawn-mowing survey mode. The hybrid underwater navigation system shows good tracking performance, by updating the error covariance and correcting the system's states with the measurement errors from a DVL, a magnetic compass, and a depth sensor. The error of the estimated position still slowly drifts in the horizontal plane, about 3.5m for 500 seconds, which could be eliminated with the help of additional USBL information.

Error Correction of a Low-Cost Hybrid Navigation System (저가형 혼합항법시스템의 오차보정)

  • Lim, Samsung;Cho, Sung Jun
    • Journal of Advanced Navigation Technology
    • /
    • v.7 no.2
    • /
    • pp.156-161
    • /
    • 2003
  • In this study, a hybrid navigation system with a low-cost GPS Receiver plus Gyro and Odometer is developed and tested. This hybrid navigation system adopted a modified coupling method which can be distinguished from tightly coupled method or loosely coupled method, so that GPS receivers or Gyros or Odometers can be chosen arbitrary. Comparing to the existing hybrid navigation system, the test results show that this navigation system enhances the accuracy and is robust against the multipath error. It is also proven that this system has an advantage of acquiring GIS data for post processing.

  • PDF

Effective Use of Radio Altimeter in GPS/DME Integrated Navigation Systems (GPS/DME 통합항법시스템에서 전파고도계의 효과적인 사용)

  • Koo, Moonsuk;So, Hyoungmin;Oh, Sang Heon;Hwang, Dong-Hwan
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.19 no.2
    • /
    • pp.272-279
    • /
    • 2016
  • Many researches on use of local ground navigation systems can be found to overcome vulnerability of GNSS. Effective use of an altimeter is proposed in GNSS/DME integrated navigation systems. A weighted DOP based on statistics of measurement error is derived for a given vehicle motion trajectory. From the derived DOP, the vertical error is estimated. By comparing the estimated vertical error with error specification of the altimeter, use of the altimeter is determined in the GPS/DME integrated navigation systems. In order to show effectiveness of the proposed method, 50 times Monte-Carlo simulations were performed for a GPS/DME integrated navigation system. The results show that the proposed method gives more accurate navigation outputs when the number of GPS satellites in view varies.

Performance Analysis of GPS and QZSS Orbit Determination using Pseudo Ranges and Precise Dynamic Model (의사거리 관측값과 정밀동역학모델을 이용한 GPS와 QZSS 궤도결정 성능 분석)

  • Beomsoo Kim;Jeongrae Kim;Sungchun Bu;Chulsoo Lee
    • Journal of Advanced Navigation Technology
    • /
    • v.26 no.6
    • /
    • pp.404-411
    • /
    • 2022
  • The main function in operating the satellite navigation system is to accurately determine the orbit of the navigation satellite and transmit it as a navigation message. In this study, we developed software to determine the orbit of a navigation satellite by combining an extended Kalman filter and an accurate dynamic model. Global positioning system (GPS) and quasi-zenith satellite system (QZSS) orbit determination was performed using international gnss system (IGS) ground station observations and user range error (URE), a key performance indicator of the navigation system, was calculated by comparison with IGS precise ephemeris. When estimating the clock error mounted on the navigation satellite, the radial orbital error and the clock error have a high inverse correlation, which cancel each other out, and the standard deviations of the URE of GPS and QZSS are small namely 1.99 m and 3.47 m, respectively. Instead of estimating the clock error of the navigation satellite, the orbit was determined by replacing the clock error of the navigation message with a modeled value, and the regional correlation with URE and the effect of the ground station arrangement were analyzed.

Assisted SBAS Global Navigation Satellite System Operation Method for Reducing SBAS Time to First Fix (SBAS 보강항법 초기 위치 결정 시간 단축을 위한 A-SGNSS 운용 방안)

  • Lee, Ju Hyun;Kim, Il Kyu;Seo, Hung Seok
    • Journal of Advanced Navigation Technology
    • /
    • v.24 no.2
    • /
    • pp.92-100
    • /
    • 2020
  • Satellite-based argumentation systems (SBAS) is a system that enhances the accuracy, integrity, availability and continuity of GNSS navigation users by using geostationary orbit (GEO) satellites to send correction information and the failures of global navigation satellite system (GNSS) satellites in the form of messages. The correction information provided by SBAS is pseudorange error, satellite orbit error, clock error, and ionospheric delay error at 250 bps. Therefore, A lot of message processing are required for the SBAS navigation. There is a need to reduce SBAS time to first fix (TTFF) for using SBAS navigation in systems with short operating time. In this paper, A-SGNSS operation method was proposed for reducing SBAS TTFF. Also, A-SGNSS TTFF and availability were analyzed.

The uniform observability and the error characteristics for stationary strapdown inertial navigation system (스트랩다운 관성항법시스템의 정지시 균일 관측 가능성 및 오차 특성 분석)

  • 정도형;박찬국;이장규
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.676-679
    • /
    • 1996
  • In this paper, the uniform observability and the error characteristics for stationary SDINS error are analyzed. The use of the Lyapunov transformation is proposed for transforming te conventional SDINS error model and the sufficient conditions for the uniform observability of SDINS error model are analytically derived. A complete characterization for the SDINS error characteristics during two position alignment is presented which allows us to predict the performance of two position alignment in SDINS.

  • PDF