• Title/Summary/Keyword: Navigation system error

Search Result 900, Processing Time 0.028 seconds

Design of In-Motion Alignment System of SDINS using Robust EKF

  • Hong, Hyun-Su;Lee, Jang-Gyu;Park, Chan-Gook
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.177.3-177
    • /
    • 2001
  • In this paper, the design of the in-motion alignment system of Strapdown Inertial Navigation System(SDINS) using Robust Extended Kalman Filter(REKF) is presented. The compensation of errors in the aided navigation system is accomplished by the indirect feedback filtering. The performance of the aided navigation algorithm is very sensitive to the accuracy of the initial estimate, which is the characteristic of the EKF. Unfortunately, the initial attitude error can be very large during the in-motion alignment. To overcome the in-motion alignment under large initial attitude error problem, the REKF using linear robust filtering technique is proposed. The linear robust H$_2$ filter can be adopted for nonlinear ...

  • PDF

Implementation of underwater precise navigation system for a remotely operated mine disposal vehicle

  • Kim, Ki-Hun;Lee, Chong-Moo;Choi, Hyun-Taek;Lee, Pan-Mook
    • International Journal of Ocean System Engineering
    • /
    • v.1 no.2
    • /
    • pp.102-109
    • /
    • 2011
  • This paper describes the implementation of a precise underwater navigation solution using a multiple sensor fusion technique based on USBL, GPS, DVL and AHRS measurements for the operation of a remotely operated mine disposal vehicle (MDV). The estimation of accurate 6DOF positions and attitudes is the key factor in executing dangerous and complicated missions. To implement the precise underwater navigation, two strategies are chosen in this paper. Firstly, the sensor frame alignment to the body frame is conducted to enhance the performance of a standalone dead-reckoning algorithm. Secondly, absolute position data measured by USBL is fused to prevent cumulative integration error. The heading alignment error is identified by comparing the measured absolute positions with the DR algorithm results. The performance of the developed approach is evaluated with the experimental data acquired by MDV in the South-sea trial.

Performance Analysis of GNSS Residual Error Bounding for QZSS CLAS

  • Yebin Lee;Cheolsoon Lim;Yunho Cha;Byungwoon Park;Sul Gee Park;Sang Hyun Park
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.12 no.3
    • /
    • pp.215-228
    • /
    • 2023
  • The State Space Representation (SSR) method provides individual corrections for each Global Navigation Satellite System (GNSS) error components. This method can lead to less bandwidth for transmission and allows selective use of each correction. Precise Point Positioning (PPP) - Real-Time Kinematic (RTK) is one of the carrier-based precise positioning techniques using SSR correction. This technique enables high-precision positioning with a fast convergence time by providing atmospheric correction as well as satellite orbit and clock correction. Currently, the positioning service that supports PPP-RTK technology is the Quazi-Zenith Satellite System Centimeter Level Augmentation System (QZSS CLAS) in Japan. A system that provides correction for each GNSS error component, such as QZSS CLAS, requires monitoring of each error component to provide reliable correction and integrity information to the user. In this study, we conducted an analysis of the performance of residual error bounding for each error component. To assess this performance, we utilized the correction and quality indicators provided by QZSS CLAS. Performance analyses included the range domain, dispersive part, non-dispersive part, and satellite orbit/clock part. The residual root mean square (RMS) of CLAS correction for the range domain approximated 0.0369 m, and the residual RMS for both dispersive and non-dispersive components is around 0.0363 m. It has also been confirmed that the residual errors are properly bounded by the integrity parameters. However, the satellite orbit and clock part have a larger residual of about 0.6508 m, and it was confirmed that this residual was not bounded by the integrity parameters. Users who rely solely on satellite orbit and clock correction, particularly maritime users, thus should exercise caution when utilizing QZSS CLAS.

Design of INS/GNSS/TRN Integrated Navigation Considering Compensation of Barometer Error (기압고도계 오차 보상을 고려한 INS/GNSS/TRN 통합항법 설계)

  • Lee, Jungshin;Sung, Changky;Park, Byungsu;Lee, Hyungsub
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.22 no.2
    • /
    • pp.197-206
    • /
    • 2019
  • Safe aircraft requires highly reliable navigation information. The traditionally used inertial navigation system (INS) often displays faulty location information due to its innate errors. To overcome this, the INS/GNSS or INS/TRN integrated navigation can be used. However, GNSS is vulnerable to jamming and spoofing, while TRN can be degraded in the flat and repetitive terrains. In this paper, to improve the performance and ensure the high reliability of the navigation system, the INS/GNSS/TRN integrated navigation based on federated filter is designed. Master filter of the integrated navigation uses the estimates and covariances of two local filters - INS/GNSS and INS/TRN integrated filters. The local filters are designed with the EKF that is feedforward type and composed of the 17st state variables. And the INS/GNSS integrated navigation includes the barometer error compensation method. Finally, the proposed INS/GNSS/TRN integrated navigation is verified by vehicle and captive flight tests.

Study on the compensation algorithm for inertial navigation system

  • Kim Hwan-Seong;NGUYEN DuyAnh
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2005.10a
    • /
    • pp.47-52
    • /
    • 2005
  • This paper describes how a relatively compensate the error of position by using low cost Inertial Measurement Unit (IMU) has been evaluated and compared with the well established method based on a Kalman Filter(KF). The compensation algorithm by using IMU have been applied to the problem of integrating information from an Inertial Navigation System (INS). The KF is to estimate and compensate the errors of an INS by using the integrated INS velocity and position. We verify the proposed algorithm by simulation results.

  • PDF

RTK Latency Estimation and Compensation Method for Vehicle Navigation System

  • Jang, Woo-Jin;Park, Chansik;Kim, Min;Lee, Seokwon;Cho, Min-Gyou
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.6 no.1
    • /
    • pp.17-26
    • /
    • 2017
  • Latency occurs in RTK, where the measured position actually outputs past position when compared to the measured time. This latency has an adverse effect on the navigation accuracy. In the present study, a system that estimates the latency of RTK and compensates the position error induced by the latency was implemented. To estimate the latency, the speed obtained from an odometer and the speed calculated from the position change of RTK were used. The latency was estimated with a modified correlator where the speed from odometer is shifted by a sample until to find best fit with speed from RTK. To compensate the position error induced by the latency, the current position was calculated from the speed and heading of RTK. To evaluate the performance of the implemented method, the data obtained from an actual vehicle was applied to the implemented system. The results of the experiment showed that the latency could be estimated with an error of less than 12 ms. The minimum data acquisition time for the stable estimation of the latency was up to 55 seconds. In addition, when the position was compensated based on the estimated latency, the position error decreased by at least 53.6% compared with that before the compensation.

Adaptive Wireless Localization Filter Containing NLOS Error Mitigation Function

  • Cho, Seong Yun
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.5 no.1
    • /
    • pp.1-9
    • /
    • 2016
  • Range-based wireless localization system must measure accurate range between a mobile node (MN) and reference nodes. However, non-line-of-sight (NLOS) error caused by the spatial structures disturbs the localization system obtaining the accurate range measurements. Localization methods using the range measurements including NLOS error yield large localization error. But filter-based localization methods can provide comparatively accurate location solution. Motivated by the accuracy of the filter-based localization method, a filter residual-based NLOS error estimation method is presented in this paper. Range measurement-based residual contains NLOS error. By considering this factor with NLOS error properties, NLOS error is mitigated. Also a process noise covariance matrix tuning method is presented to reduce the time-delay estimation error caused by the single dynamic model-based filter when the speed or moving direction of a MN changes, that is the used dynamic model is not fit the current dynamic of a MN. The presented methods are evaluated by simulation allowing direct comparison between different localization methods. The simulation results show that the presented filter is more accurate than the iterative least squares- and extended Kalman filter-based localization methods.

In-Flight Alignment Algorithm Using Uplinked Radar Data Including Time Delay

  • Park, Chan-Ju;Kim, Heun-Beik;Song, Gi-Won
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.56.1-56
    • /
    • 2001
  • Initial attitude error is one of the large error sources in the navigation errors of SDINS. And it is important to decide the initial attitude of SDINS. The method, like a self-alignment or a transfer alignment method, is required to a precise INS. If we do not have a precise INS, we should get large attitude error. After performing the initial alignment, a vehicle has the initial attitude error. Therefore, it results in navigation error due to the initial attitude error. But, if we use position information during flight, we could estimate and compensate a vehicle attitude error. So, we can maintain a precise attitude in spite of existing the initial attitude error. Using the uplinked position information from a land-based radar system, the new algorithm estimates the attitude of the SDINS during flight ...

  • PDF

Development of a CSGPS/DR Integrated System for High-precision Trajectory Estimation for the Purpose of Vehicle Navigation

  • Yoo, Sang-Hoon;Lim, Jeong-Min;Oh, Jeong-Hun;Kim, Ho-Beom;Lee, Kwang-Eog;Sung, Tae-Kyung
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.4 no.3
    • /
    • pp.123-130
    • /
    • 2015
  • In this study, a carrier smoothed global positioning system / dead reckoning (CSGPS/DR) integrated system for high-precision trajectory estimation for the purpose of vehicle navigation was proposed. Existing code-based GPS has a low position accuracy, and carrier-phase differential global positioning system (CPDGPS) has a long waiting time for high-precision positioning and has a problem of high cost due to the establishment of infrastructure. To resolve this, the continuity of a trajectory was guaranteed by integrating CSGPS and DR. The results of the experiment indicated that the trajectory precision of the code-based GPS showed an error performance of more than 30cm, while that of the CSGPS/DR integrated system showed an error performance of less than 10cm. Based on this, it was found that the trajectory precision of the proposed CSGPS/DR integrated system is superior to that of the code-based GPS.