• Title/Summary/Keyword: Navigation Sensor

Search Result 1,010, Processing Time 0.032 seconds

Near-field Data Exchange by Motion Recognition of mobile phone (모바일 폰의 모션 인식에 의한 근거리 데이터 교환)

  • Hwang, Tae-won;Seo, Jung-hee;Park, Hung-bog
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.05a
    • /
    • pp.800-801
    • /
    • 2017
  • Location-based services (LBS) are used in various applications such as emergency support, navigation, location, traffic routes, information gathering, and entertainment due to the rapid growth of information communication technologies and mobile phones. In general, locations are represented by coordinates and are related to terrain. These are of great interest in mobile-based data transmission. This paper proposes a method to exchange the contact of the other party by detecting the movement of the mobile phone of the individual user based on the location-based service. The proposed method extracts motion using the acceleration sensor of the mobile phone and transmits the location and time information to the server when the motion continues for a predetermined time. Attempts to establish a connection between users who are experiencing motion in mobile phones in the short distance have been made from the server. Once the connection between the users is made, the encrypted contact is received from the server. Experimental results show that the proposed method can exchange data by minimizing the processing in the handset compared with the existing method.

  • PDF

Guidance Filter Design Based on Strapdown Seeker and MEMS Sensors (스트랩다운 탐색기 및 MEMS 센서를 이용한 유도필터 설계)

  • Yun, Joong-Sup;Ryoo, Chang-Kyung;Song, Taek-Lyul
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.10
    • /
    • pp.1002-1009
    • /
    • 2009
  • Precision guidance filter design for a tactical missile with a strapdown seeker aided by low-cost strapdown sensors has been addressed in this paper. The low-cost strapdown sensors consist of an IMU with 3-axis accelerometers and gyroscopes, 3-axis magnetometers, and a barometer. Missile's position, velocity, attitude, and bias error of the barometer are considered as state variables. Since the state and measurement equations are highly nonlinear, we adopt UKF(Unscented Kalman Filter). The proposed guidance filter has a function of a navigation filter if target position error is not considered. In the case that the target position error is introduced, the proposed filter can effectively estimate the relative states of the missile to the true target. For specific engagement scenarios, we can observe that observability problems occur.

A Study on Application Methods of Drone Technology (드론기술 적용 방안 연구)

  • Kim, Hee-Wan
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.10 no.6
    • /
    • pp.601-608
    • /
    • 2017
  • In the fourth industrial revolution, drones are an important element to lead the industry by converging with information technology. Drones are developing various technologies by combining with communication / navigation / traffic management technology, control and detection / avoidance technology, sensor technology, SW and application technology. However, there are various problems in order to settle the drone technology. In this paper, it will be examined the problems of application of drones through application fields of drones, domestic and foreign cases, and core technologies of drones. The growth of the drone market requires improvement of laws and institutions. This paper proposed security vulnerability, privacy and safety problem in wireless communication, and present technical and management problems for drone service in the Korean environment in particular.

A Study on Improvement of Submarine Attack Periscope Operation Performance using Installing Protector on Sail (잠수함 공격잠망경 함교 보호구조물 설치를 통한 장비 운용성능 향상에 관한 연구)

  • Choi, Woo-Seok;Chang, Ho-Seong;Lee, Young-Suk;Kim, Sang-Il
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.5
    • /
    • pp.199-206
    • /
    • 2021
  • This paper describes the feasibility and reliability verification of installing a protective structure to protect attack periscopes. The attack periscope is the critical equipment of a submarine to enable the user to monitor surface and air activity, collect navigational data, and detect and identify targets. The attack periscope provides target information acquired through TV, IR camera, and laser range finder to the combat system. In the product improvement program, the upper part of the masts was exposed to the outside of the sail because the existing attack periscope was replaced with a new one. On the other hand, the head sensor can be damaged by floating objects, such as fishing nets, during sea navigation. Therefore, the installation of a protective structure for an attack periscope improved the equipment operation performance. The feasibility and reliability of the installation of the protective structure were verified by examining the influence of URN.

RPC Correction of KOMPSAT-3A Satellite Image through Automatic Matching Point Extraction Using Unmanned AerialVehicle Imagery (무인항공기 영상 활용 자동 정합점 추출을 통한 KOMPSAT-3A 위성영상의 RPC 보정)

  • Park, Jueon;Kim, Taeheon;Lee, Changhui;Han, Youkyung
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_1
    • /
    • pp.1135-1147
    • /
    • 2021
  • In order to geometrically correct high-resolution satellite imagery, the sensor modeling process that restores the geometric relationship between the satellite sensor and the ground surface at the image acquisition time is required. In general, high-resolution satellites provide RPC (Rational Polynomial Coefficient) information, but the vendor-provided RPC includes geometric distortion caused by the position and orientation of the satellite sensor. GCP (Ground Control Point) is generally used to correct the RPC errors. The representative method of acquiring GCP is field survey to obtain accurate ground coordinates. However, it is difficult to find the GCP in the satellite image due to the quality of the image, land cover change, relief displacement, etc. By using image maps acquired from various sensors as reference data, it is possible to automate the collection of GCP through the image matching algorithm. In this study, the RPC of KOMPSAT-3A satellite image was corrected through the extracted matching point using the UAV (Unmanned Aerial Vehichle) imagery. We propose a pre-porocessing method for the extraction of matching points between the UAV imagery and KOMPSAT-3A satellite image. To this end, the characteristics of matching points extracted by independently applying the SURF (Speeded-Up Robust Features) and the phase correlation, which are representative feature-based matching method and area-based matching method, respectively, were compared. The RPC adjustment parameters were calculated using the matching points extracted through each algorithm. In order to verify the performance and usability of the proposed method, it was compared with the GCP-based RPC correction result. The GCP-based method showed an improvement of correction accuracy by 2.14 pixels for the sample and 5.43 pixelsfor the line compared to the vendor-provided RPC. In the proposed method using SURF and phase correlation methods, the accuracy of sample was improved by 0.83 pixels and 1.49 pixels, and that of line wasimproved by 4.81 pixels and 5.19 pixels, respectively, compared to the vendor-provided RPC. Through the experimental results, the proposed method using the UAV imagery presented the possibility as an alternative to the GCP-based method for the RPC correction.

Improvement of Accuracy on Dynamic Position Determination Using Combined DGPS/IMU (DGPS/IMU 결합에 의한 동적위치결정의 정확도 향상)

  • Back, Ki-Suk;Park, Un-Yong;Hong, Soon-Heon
    • Journal of the Korean Geophysical Society
    • /
    • v.9 no.4
    • /
    • pp.361-369
    • /
    • 2006
  • This study conducted an initialization test to decide dynamic position using AHRS IMU sensor, and derived attitude correction angles of vehicles against time through regression analysis. It was also found that the heading angle was stabilized with variation less than 1°after 60 seconds. Using these angles, this study carried out an experiment on the determination of dynamic position for each system in the open sky and in a semi-open sky. According to the results, in the open sky, DGPS alone systems were excellent in accuracy but poor in data acquisition, so the moving distance was around 12m. In DGPS/IMU combined system, accuracy and data acquisition were satisfactory and the moving distance was around 0.3m. In a semi-open sky, DGPS alone systems were excellent in accuracy in order of DGPS < FIMU < DGPS/IMU according to average and standard errors obtained with exclusion of places where data were not be obtained. The moving distance was the same as that in the open sky. For DGPS, when places where data were not obtainable were divided into Several block and they were compared, the maximum deviation from the trajectory was up to 41.5m in DGPS alone system, but it was less than 2.2m and average and standard errors were significantly improved in the combined system. When the navigation system was applied to surveys and the result was compared with position error 0.2mm under the guideline for digital map, it was possible to work on maps on a scale of up to 1 : 1,000.

  • PDF

Bio-Signal Detection Monitoring System Using ZigBee and Wireless Network (거리측정 센서 스캐닝과 퍼지 제어를 이용한 생체신호 모니터링 전동 휠체어 자율주행 시스템)

  • Kim, Kuk-Se;Yang, Sang-Gi;Rasheed, M.Tahir;Ahn, Seong-Soo;Lee, Joon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.10a
    • /
    • pp.331-339
    • /
    • 2008
  • Nowadays with advancement in technology and aging society, the number of disabled citizens is increasing. The disabled citizens always need a caretaker for daily life routines especially for mobility. In future, the need is considered to increase more. To reduce the burden from the disabled, various devices for healthcare are introduced using computer technology. The power wheelchair is an important and convenient mobility device. The demand of power wheelchair is increasing for assistance in mobility. In this paper we proposed a robotic wheelchair for mobility aid to reduce the burden from the disabled. The main issue in an autonomous wheelchair is the automatic detection and avoidance of obstacles and going to the pre-designated place. The proposed algorithm detects the obstacles and avoids them to drive the wheelchair to the desired place safely. By this way, the disabled will not always have to worry about paying deep attention to the surroundings and his path. User has a handheld bio-sensor monitoring system for get user's bio-signal. If user detects unusual signal, alarm send to protector.

  • PDF

A Study on IoT and Cloud-based Real-time Bridge Height Measurement Service (사물인터넷과 클라우드 기반의 실시간 교량 높이 계측 서비스 연구)

  • Choi, Cha-Hwan;Cheon, Young-Man;Jeong, Seung-Hun;Tcha, Dek-Kie;Lee, Young-Jae
    • Journal of Cadastre & Land InformatiX
    • /
    • v.47 no.2
    • /
    • pp.145-157
    • /
    • 2017
  • Currently, the height of ships that can pass under Busan Harbor Bridge is limited to 60m or shorter, so that large-sized ships of 60m or taller cannot use Busan Harbor international passenger terminal. Accordingly, this study has developed a service which measures continuously the change of bridge height by water level changes and provides such in real-time for safe bridge passage of large-sized ships of 60m or taller. The measurement system comprised of high-precision laser distance measurement device, GPS sensor, optical module, and damping structure is used to measure the bridge height change according to tide level changes, and the measured information is provided in real-time through cloud-based mobile app. Also, in order to secure objective bridge height data for changes to height limits and navigation supports, the observation data was analyzed and forecast model was drawn. As a result, it became an objective evidence to revise the passage height rules of the Busan Port Bridge from 60 meters to 63 meters.

Polarization Precession Effects for Shear Elastic Waves in Rotated Solids

  • Sarapuloff, Sergii A.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.04a
    • /
    • pp.842-848
    • /
    • 2013
  • Developments of Solid-State Gyroscopy during last decades are impressive and were based on thin-walled shell resonators like HRG or CRG made from fused quartz or leuko-sapphire. However, a number of design choices for inertial-grade gyroscopes, which can be used for high-g applications and for mass- or middle-scale production, is still very limited. So, considerations of fundamental physical effects in solids that can be used for development of a miniature, completely solid-state, and lower-cost sensor look urgent. There is a variety of different types of bulk acoustic (elastic) waves (BAW) in anisotropic solids. Shear waves with different variants of their polarization have to be studied especially carefully, because shear sounds in glasses and crystals are sensitive to a turn of the solid as a whole, and, so, they can be used for development of gyroscopic sensors. For an isotropic medium (for a glass or a fine polycrystalline body), classic Lame's theorem (so-called, a general solution of Elasticity Theory or Green-Lame's representation) has been modified for enough general case: an elastic medium rotated about an arbitrary set of axes. Travelling, standing, and mixed shear waves propagating in an infinite isotopic medium (or between a pair of parallel reflecting surfaces) have been considered too. An analogy with classic Foucault's pendulum has been underlined for the effect of a turn of a polarizational plane (i.e., an integration effect for an input angular rate) due to a medium's turn about the axis of the wave propagation. These cases demonstrate a whole-angle regime of gyroscopic operation. Single-crystals are anisotropic media, and, therefore, to reflect influence of the crystal's rotation, classic Christoffel-Green's tensors have been modified. Cases of acoustic axes corresponding to equal velocities for a pair of the pure-transverse (shear) waves have of an evident applied interest. For such a special direction in a crystal, different polarizations of waves are possible, and the gyroscopic effect of "polarizational precession" can be observed like for a glass. Naturally, formation of a wave pattern in a massive elastic body is much more complex due to reflections from its boundaries. Some of these complexities can be eliminated. However, a non-homogeneity has a fundamental nature for any amorphous medium due to its thermodynamically-unstable micro-structure, having fluctuations of the rapidly-frozen liquid. For single-crystalline structures, blockness (walls of dislocations) plays a similar role. Physical nature and kinematic particularities of several typical "drifts" in polarizational BAW gyros (P-BAW) have been considered briefly too. They include irregular precessions ("polarizational beats") due to: non-homogeneity of mass density and elastic moduli, dissymmetry of intrinsic losses, and an angular mismatch between propagation and acoustic axes.

  • PDF

Ship Positioning Using Multi-Sensory Data for a UAV Based Marine Surveillance (무인항공기 기반 해양 감시를 위한 멀티센서 데이터를 활용한 선박 위치 결정)

  • Ryu, Hyoungseok;Klimkowska, Anna Maria;Choi, Kyoungah;Lee, Impyeong
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.2_2
    • /
    • pp.393-406
    • /
    • 2018
  • Every year in the ocean, various accidents occur frequently and illegal fishing is rampant. Moreover, their size and frequency are also increasing. In order to reduce losses of life or property caused by these, it is necessary to have a means to perform remote monitoring quickly. As an effective platform of such monitoring means, an Unmanned Aerial Vehicle (UAV) is receiving the spotlight. In these situations where marine accidents or illegal fishing occur, main targets of monitoring are ships. In this study, we propose a UAV based ship monitoring system and suggest a method of determining ship positions using UAV multi-sensory data. In the proposed method, firstly, the position and attitude of individual images are determined by using the pre-performed system calibration results and GPS/INS data obtained at the time when images were acquired. In addition, after the ship being detected automatically or semi-automatically from the individual images, the absolute coordinates of the detected ships are determined. The proposed method was applied to actual data measured at 200 m, 350 m, and 500 m altitude, the ship position can be determined with accuracy of 4.068 m, 8.916 m, and 13.734 m, respectively. According to the minimum standard of a hydrographical survey, the ship positioning results of 200 m and 350 m data satisfy grade S and the results of 500 m data do grade 1a, where the accuracy is required for positioning the coastline and topography less significant to navigation order. Therefore, it is expected that the proposed method can be effectively used for various purposes of marine monitoring or surveying.