• 제목/요약/키워드: Navigation Potential Field

검색결과 57건 처리시간 0.025초

Magnetic Actuator for a Capsule Endoscope Navigation System

  • Chiba, Atsushi;Sendoh, Masahiko;Ishiyama, Kazushi;Arai, Ken Ichi;Kawano, Hironao;Uchiyama, Akio;Takizawa, Hironobu
    • Journal of Magnetics
    • /
    • 제12권2호
    • /
    • pp.89-92
    • /
    • 2007
  • The authors propose a magnetic actuator for use as a navigation system for capsule endoscopes. The actuator is composed of a capsule dummy, a permanent magnet inside the capsule, and an external spiral structure. The device rotates and propels wirelessly when exposed to an external rotational magnetic field. In this study we measured the effect of the spiral shape on the velocity and thrust force properties. According to our experimental results, the actuator obtained a maximum velocity and thrust force when the spiral angle was set at 45 degrees, the number of spirals was set at 4, and the spiral-height was set at 1-mmf. We also conducted a motion test in the large intestine of a pig placed on a 30 degrees slope. The actuator passed through a 700 mm length of the intestine in about 300 s. The device also managed to travel up and down the 30 degrees slope with no difficulty whatsoever. Our results demonstrate the great potential of this actuator for use as a navigation system for capsule endoscopes.

자율수상선을 이용한 수중 자기장 지도 작성 (Underwater Magnetic Field Mapping Using an Autonomous Surface Vehicle)

  • 정종대;박정홍;최진우
    • 로봇학회논문지
    • /
    • 제13권3호
    • /
    • pp.190-197
    • /
    • 2018
  • Geomagnetic field signals have potential for use in underwater navigation and geophysical surveys. To map underwater geomagnetic fields, we propose a method that exploits an autonomous surface vehicle. In our system, a magnetometer is rigidly attached to the vehicle and not towed by a cable, minimizing the system's size and complexity but requiring a dedicated calibration procedure due to magnetic distortion caused by the vehicle. Conventional 2D methods can be employed for the calibration by assuming the horizontal movement of the magnetometer, whereas the proposed 3D approach can correct for horizontal misalignment of the sensor. Our method does not require a supporting crane system to rotate the vehicle, and calibrates and maps simultaneously by exploiting data obtained from field operation. The proposed method has been verified experimentally in inland waters, generating a magnetic field map of the test area that is of much higher resolution than the public magnetic field data.

Potential Accuracy of GNSS PPP- and PPK-derived Heights for Ellipsoidally Referenced Hydrographic Surveys: Experimental Assessment and Results

  • Yun, Seonghyeon;Lee, Hungkyu;Choi, Yunsoo;Ham, Geonwoo
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제6권4호
    • /
    • pp.211-221
    • /
    • 2017
  • Ellipsodially referenced survey (ERS) is considered as one of the challenging issues in the hydrographic surveys due to the fact that the bathymetric data collected by this technique can be readily transformed either to the geodetic or the chart datum by application of some geoscientific models. Global Navigation Satellite Systems (GNSS) is a preferred technique to determine the ellipsoidal height of a vessel reference point (RP) because it provides cost-effective and unprecedentedly accurate positioning solutions. Especially, the GNSS-derived heights include heave and dynamic draft of a vessel, so as for the reduced bathymetric solutions to be potentially free from these corrections. Although over the last few decades, differential GNSS (DGNSS) has been widely adopted in the bathymetric surveys, it only provides limited accuracy of the vertical component. This technical barrier can be effectively overcome by adopting the so-called GNSS carrier phase (CPH) based techniques, enhancing accuracy of the height solution up to few centimeters. From the positioning algorithm standpoint, the CPH-based techniques are categorized under absolute and relative positioning in post-processing mode; the former is precise point positioning (PPP) correcting errors by the global or regional models, the latter is post-processed kinematic positioning (PPK) that uses the differencing technique to common error sources between two receivers. This study has focused on assessment of achievable accuracy of the ellipsoidal heights obtained from these CPH-based techniques with a view to their applications to hydrographic surveys where project area is, especially, few tens to hundreds kilometers away from the shore. Some field trials have been designed and performed so as to collect GNSS observables on static and kinematic mode. In this paper, details of these tests and processed results are presented and discussed.

Controlling robot formations by means of spatial reasoning based on rough mereology

  • Zmudzinski, Lukasz;Polkowski, Lech;Artiemjew, Piotr
    • Advances in robotics research
    • /
    • 제2권3호
    • /
    • pp.219-236
    • /
    • 2018
  • This research focuses on controlling robots and their formations using rough mereology as a means for spatial reasoning. The authors present the state of the art theory behind path planning, robot cooperation domains and ways of creating robot formations. Furthermore, the theory behind Rough Mereology as a way of implementing mereological potential field based path creation and navigation for single and multiple robots is described. An implementation of the algorithm is shown in simulation using RoboSim simulator. Five formations are tested (Line, Rhomboid, Snake, Circle, Cross) along with three decision systems (First In, Leader First, Horde Mode) as compared to other methods.

Implementation of Enhanced Vision for an Autonomous Map-based Robot Navigation

  • Roland, Cubahiro;Choi, Donggyu;Kim, Minyoung;Jang, Jongwook
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2021년도 추계학술대회
    • /
    • pp.41-43
    • /
    • 2021
  • Robot Operating System (ROS) has been a prominent and successful framework used in robotics business and academia.. However, the framework has long been focused and limited to navigation of robots and manipulation of objects in the environment. This focus leaves out other important field such as speech recognition, vision abilities, etc. Our goal is to take advantage of ROS capacity to integrate additional libraries of programming functions aimed at real-time computer vision with a depth-image camera. In this paper we will focus on the implementation of an upgraded vision with the help of a depth camera which provides a high quality data for a much enhanced and accurate understanding of the environment. The varied data from the cameras are then incorporated in ROS communication structure for any potential use. For this particular case, the system will use OpenCV libraries to manipulate the data from the camera and provide a face-detection capabilities to the robot, while navigating an indoor environment. The whole system has been implemented and tested on the latest technologies of Turtlebot3 and Raspberry Pi4.

  • PDF

Framed-Quadtree 파면전파 기법과 항법함수 기법을 이용한 항공기 위협회피 궤적 설계 (Aircraft Path Planning Considering Pop-up Threats Using Framed-Quadtree Wavefront Propagation and Navigation Function)

  • 김필준;최종욱;김유단
    • 한국항공우주학회지
    • /
    • 제35권10호
    • /
    • pp.918-926
    • /
    • 2007
  • 군용 항공기는 임무수행 지역의 방어 시스템을 효과적으로 우회하여 비행해야 성공적으로 임무를 수행할 수 있다. 이를 위해 항공기가 위협을 회피하며 비행하는 경로를 생성하는 알고리듬이 요구된다. 본 논문에서는 포텐셜 기법을 이용하여 다수의 위협과 예상하지 못한 위협을 고려하여 비행경로를 생성하는 경로생성 기법을 제안하였다. 파면전파 기법과 항법함수를 함께 사용하여 포텐셜 기법에서 발생하는 국부최적해 문제를 해결하였다. 비행거리가 제한된 무인항공기에 적용이 가능한 비행경로를 생성하기 위해 최대이동거리를 고려한 경로생성 기법과 예상하지 못한 위협이 발생한 상황에 부드러운 경로를 생성하는 효율적인 경로전환 기법을 제안하였다. 제안한 기법의 성능을 검증하기 위해 중첩된 위협이 존재하는 상황에 대해 수치 시뮬레이션을 수행하였다.

Efficient Visual Place Recognition by Adaptive CNN Landmark Matching

  • Chen, Yutian;Gan, Wenyan;Zhu, Yi;Tian, Hui;Wang, Cong;Ma, Wenfeng;Li, Yunbo;Wang, Dong;He, Jixian
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제15권11호
    • /
    • pp.4084-4104
    • /
    • 2021
  • Visual place recognition (VPR) is a fundamental yet challenging task of mobile robot navigation and localization. The existing VPR methods are usually based on some pairwise similarity of image descriptors, so they are sensitive to visual appearance change and also computationally expensive. This paper proposes a simple yet effective four-step method that achieves adaptive convolutional neural network (CNN) landmark matching for VPR. First, based on the features extracted from existing CNN models, the regions with higher significance scores are selected as landmarks. Then, according to the coordinate positions of potential landmarks, landmark matching is improved by removing mismatched landmark pairs. Finally, considering the significance scores obtained in the first step, robust image retrieval is performed based on adaptive landmark matching, and it gives more weight to the landmark matching pairs with higher significance scores. To verify the efficiency and robustness of the proposed method, evaluations are conducted on standard benchmark datasets. The experimental results indicate that the proposed method reduces the feature representation space of place images by more than 75% with negligible loss in recognition precision. Also, it achieves a fast matching speed in similarity calculation, satisfying the real-time requirement.

군집로봇의 경로이탈 방지를 위한 하이브리드 경로계획 기법 (Hybrid Path Planning of Multi-Robots for Path Deviation Prevention)

  • 위성길;김윤구;최정원;이석규
    • 제어로봇시스템학회논문지
    • /
    • 제19권5호
    • /
    • pp.416-422
    • /
    • 2013
  • This paper suggests a hybrid path planning method of multi-robots, where a path deviation prevention for maintaining a specific formation is implemented by using repulsive function, $A^*$ algorithm and UKF (Unscented Kalman Filter). The repulsive function in potential field method is used to avoid collision among robots and obstacles. $A^*$ algorithm helps the robots to find optimal path. In addition, error estimation based on UKF guarantees small path deviation of each robot during navigation. The simulation results show that the swarm robots with designated formation successfully avoid obstacles and return to the assigned formation effectively.

유한요소법을 이용한 자이로스코프 토커의 설계 (Design of the Gyroscope Torquer using Finite Element Method)

  • 윤중석;원종수
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1987년도 정기총회 및 창립40주년기념 학술대회 학회본부
    • /
    • pp.53-56
    • /
    • 1987
  • Gyroscope is a key sensor for inertial navigation system (INS) which is a navigational instrument necessary to guide and control a free vehicle, and an important instrument for defense, aeronautical, and space industries that is and will be actively involved. In this study, design parameters, scale factor and linearity, of torquer which is one of the components of two degree of freedom dynamically tuned gyroscope (DTG) are presented. The magnetic circuit of torquer is so complicated that it is difficult to analyze it with analytic method. Thus these parameters are calculated by using finite element method with analysis of magnetic vector potential for axisymmetric 3-dimension magnetic field.

  • PDF

N개의 원형 실린더 주위에서의 해저면 토사이동 (Bottom Mass Transport Considering the Interaction of Waves with an Array of N Circular Cylinders)

  • 조일형;홍사영
    • 한국항만학회지
    • /
    • 제9권1호
    • /
    • pp.57-63
    • /
    • 1995
  • In this paper we examine the mass transport within the boundary layer near the sea bottom. The fluid domain is seperated into inner and outer region of boundary layers. In outer region, the wave field is assumed to be inviscid and irrotational. When the incident waves enter the arrays of circular cylinders, the scattering of water waves by an array of N bottom mounted vertical circular cylinders is solved using the method proposed by Linton & Evans under the potential theory. In inner region, the Navier-Stokes equation must be satisfied with boundary conditions at the boundary later and bottom is to be represented by the sum of the Eulerian mean drift and the Stokes' drift.

  • PDF