• Title/Summary/Keyword: Navigation Point

Search Result 831, Processing Time 0.03 seconds

Extended kalman filter design for autonomous navigation with GPS and INS sensor system fusion (GPS와 INS의 센서융합을 이용한 자율항법용 확장형 칼만필터 설계)

  • Yun, Duk-Sun;Yu, Hwan-Shin
    • Journal of Sensor Science and Technology
    • /
    • v.16 no.4
    • /
    • pp.294-300
    • /
    • 2007
  • Autonomous unmanned vehicle is able to find the path and the way point by itself. For the more precise navigation performance, Extended kalman filter, which is integrated with inertial navigation system and global positioning system is proposed in this paper. Extended kalman filter's performance is evaluated by the simulation and applied to the unmanned vehicle. The test result shows the effectiveness of extended kalman filter for the navigation.

Experimental Research on the Characteristics of Indoor Positioning Systems and Mobile Robot Navigation (실내용 위치센서의 특성과 이동로봇의 주행제어에 관한 실험적 연구)

  • Ahn, Jae-Wan;Jin, Ji-Yong;Chung, Woo-Jin
    • The Journal of Korea Robotics Society
    • /
    • v.5 no.3
    • /
    • pp.231-239
    • /
    • 2010
  • For indoor mobile robots, the performance of autonomous navigation is affected by a variety of factors. In this paper, we focus on the characteristics of indoor absolute positioning systems. Two commercially available sensor systems are experimentally tested under various conditions. Mobile robot navigation experiments were carried out, and the results show that resultant performance of navigation is highly dependent upon the characteristics of positioning systems. The limitations and characteristics of positioning systems are analyzed from both quantitative and qualitative point of view. On the basis of the analysis, the relationship between the positioning system characteristics and the controller design are presented.

Simon Stevin's Works on Loxodrome and Equiangular Spiral Curve: Navigation as a Starting Point of Mathematical Discovery (시몬 스테빈의 등각항로 연구와 등각나선곡선 : 생존을 위한 지식이자 새로운 발견의 출발점이 되었던 항해술)

  • JUNG, Won
    • Journal for History of Mathematics
    • /
    • v.28 no.5
    • /
    • pp.249-262
    • /
    • 2015
  • Simon Stevin, a mathematician active in the Netherlands in early seventeenth century, parlayed his mathematical talents into improving navigation skills. In 1605, he introduced a technique of calculating the distance of loxodrome employed in long-distance voyages in his book, Navigation. He explained how to calculate distance by 8 different angles, and even depicted how to make a copper loxodrome model for navigators. Particularly, Stevin clarified in the 7th copper loxodrome model on the unique features of equiangular spiral curve that keeps spinning and gradually accesses from the vicinity to the center. These findings predate those of Descartes on equiangular spiral curve by more than 30 years. Navigation, a branch of actual mathematics devised for the survival of sailors on the bosom of the ocean, was also the first step to the discovery of new mathematical object.

A Study on Development of A GPS navigation system based on RFID which contains location information (위치정보가 기록된 RFID를 이용한 택배차량용 내비게이션 시스템 개발에 관한 연구)

  • Shim, Jin-Bum;Han, Yeong-Geun
    • Journal of the Korea Safety Management & Science
    • /
    • v.12 no.1
    • /
    • pp.113-118
    • /
    • 2010
  • "Domestic delivery service" is defined the service to deliver goods or packages from point of senders to point of receiver. With the characteristics of door to door, it is must a service provider should know the exact location of destination assuring best utilization of moving path. Generally, location information consist of postal code and address only, which result in difficulties to identify the precise location of destination. It is relatively less correlated between the information that address refers and practical location in Korea address system. For example, the next door to house number 100 is not always house number 101. Therefore, a delivery man additionally uses a paper map or a GPS navigation which carry extra job to input every code of location to the device in order to know precise location. It is also very inconvenient that every delivery man identify the location that address information refers and make a personal decision of the optimum moving path dropping each destination without calculating provisioning process of whole delivery path. As explained above, it is inefficient to find information delivery service required and to generate the optimum path. In results, these difficulties bring in delay of service and increase of cost. In this point, the contents of the thesis suggest a GPS navigation system easy to obtain accuracy of delivery information which enables to automate optimum moving path based on RFID which contains location information.

A Study on Shifting of Pivoting Point in accordance with Configuration of Ships (선형에 따른 전심의 이동에 관한 연구)

  • 최명식
    • Journal of the Korean Institute of Navigation
    • /
    • v.10 no.2
    • /
    • pp.83-96
    • /
    • 1986
  • In the restricted sea way such as fair way in harbor, narrow channel etc, the safe ship-handling is a very important problem, which is greatly related with turning ability of ships. It is of great importance that ship-handlers can grasp the position of pivoting point varying with time increase at any moment for relevant steering activities. Mean while, in advanced ship-building countries they study and investigated pivoting point related with turning characteristics, hut their main interest lies in ship design, not in safe ship controlling and maneuvering. In this regards it is the purpose of this paper to provide ship-handlers better under standing of pivoting point location together with turning characteristics and then to help them in safe ship-handling by presenting fact that pivoting points vary according to configuration of ships. The author calculated the variation of pivoting point as per time increase for various type of vessels, based on the hydrodynamic derivatives obtained at test of Davidson Laboratory of Stevens Institutes of Technology , New Jersey, U.S.A. The results were classified and investigated according to the magnitude of block coefficient , length-beam ratio, length-draft ratio, rudder area ratio ete, and undermentioned results were obtained. (1) The trajectory of pivoting point due to variation of rudder angle are all the same at any time, though the magenitude of turning circle are changed variously. (2) The moving of pivoting point is affected by the magnitude of block coefficient, length-beam ratio, length-draft ratio, however the effect by rudder area ratio might be disregarded. (3) In controlling and maneuvering of vessels in harbor, ship-handlers might regard that the pivoting point would be placed on 0.2~0.3L forward from center of gravity at initial stage. (4) The pivoting point of VLCC or container feeder vessels which have block coefficient more than 0.8 and length-beam ratio less than 6.5 are located on or over bow in the steady turning. (5) When a vessel intends to avoid some floating obstruction such as buoy forward around her eourse, the ship-handler might consider that the pivoting point would be close by bow in ballast condition and cloase by center of gravity in full-loaded condition.

  • PDF

Comparison Between DCM and Quaternion Transformation in Lever Arm Compensation of Reference System for Flight Performance Evaluation of DGPS/INS

  • Park, Ji-Hee;Shin, Dong-Ho
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.1 no.1
    • /
    • pp.45-49
    • /
    • 2012
  • The flight performance evaluation of navigation system is very significant because the reliability of navigation data directly affect the safety of aircraft. Especially, the high-level navigation system such as DGPS/INS, need more precise flight performance evaluation method. The performance analysis is evaluated by comparing between the navigation system in aircraft and reference trajectory which is more precise than navigation system in aircraft. In order to verify DGPS/INS performance of m-level, the GPS receiver, which is capable post-processed Carrier-phase Differential GPS(CDGPS) method of cm-level, have to be used as reference system. The DGPS/INS is estimated the Center of Gravity (CG) point of aircraft to offer precise performance while the reference system is output the position of GPS antenna which is mounted on the outside of aircraft. Therefore, in order to more precise performance evaluation, it needs to compensate the lever arm and coordinates transformation. This paper use quaternion and Direct Cosine Matrix(DCM) methods as coordinate transformation matrix in lever arm compensation of CDGPS reference trajectory. And it compares NED errors of DCM and quaternion transformation in lever arm of reference trajectory via DGPS/INS result.

Video Segmentation and Video Segment Structure for Virtual Navigation

  • Choi, Ji-Hoon;Kim, Seong-Baek;Lee, Seung-Yong;Lee, Jong-Hun
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.783-785
    • /
    • 2003
  • In recent years, the use of video in GIS is considered to be an important subject and many related studies result in VideoGIS. The virtual navigation is an important function that can be applied to various VideoGIS applications. For virtual navigation by video, the following problems must be solved. 1) Because the video route may be not exactly coincided with route that user wants to navigate, parts of several video clips may be required for single navigation. Virtual navigation should allow the user to move from one video to another at the proper position. We suggest the video segmentation method based on geographic data combined with video. 2) From a point to a destination, the change frequency of video must be minimized. The frequent change of video make user to mislead navigation route and cause the wasteful use of computing resource. We suggest methods that structure video segments and calculate weight value of each node and link.

  • PDF

A Study on Detecting Optimal Corner Points using Morphology and Human Visual Concept (수리 형태학과 인간의 시각적 개념을 이용한 최적의 코너 점 추출을 위한 연구)

  • Jeong, Gi-Ryong
    • Journal of Navigation and Port Research
    • /
    • v.28 no.3
    • /
    • pp.233-238
    • /
    • 2004
  • Comer point is a very important information to a pattern recognition of image processing. And so, many researchers develope various detecting comer point algoritms. But, there are some problems to get comer points by 8 directional chain code when the degree of edge line is not integer multiplication of 45 degree. So, we propose a new algorithm which is combined with morphology and human visual conception for optimal comer points without the above defects. We get a good simulation result by this proposed algorithm Ana so, we think this algorithm is very useful to FA(factory automation} and ship's radar system to know some coastal area from its image.

Access Point Interface Configuration using Radio over Fiber for the WIBRO System (WIBRO 시스템의 Radio over Fiber에 의한 Access Point 접속구도)

  • Song, Ju-Bin;Kim, Young-Il
    • Journal of Advanced Navigation Technology
    • /
    • v.9 no.2
    • /
    • pp.93-102
    • /
    • 2005
  • This paper presents an interface configuration between Access Point(AP) and Radio Over Fiber (ROF) transceiver for the wireless internet system. The wireless internet could provides 60km/h mobility and 50Mbps IP based data services for each mobile terminal. Thus, cost effective cell infrastructure is inevitably required. This paper suggests an interface configuration between AP and passive integrated picocell(PIP) involving ROF links. Nonlinear characteristics of ROF link using a typical FP transceiver are measured for wireless internet applications.

  • PDF

Dynamic Gait embody using angular acceleration for a Walking Robot (각가속도를 이용한 이족 로봇의 동적 걸음새 구현)

  • Park, Jae-Mun;Park, Seung-Yub;Ko, Bong-Jin
    • Journal of Advanced Navigation Technology
    • /
    • v.11 no.2
    • /
    • pp.209-216
    • /
    • 2007
  • In this paper, we embodied posture-stabilization and dynamic gait in a walking robot. 10 RC servo motors are used to operate joints. And the joints have enough moving ranges suitable in any walking pattern. Each joint trajectory is generated by cubic spline interpolation method and the stability of the trajectory is verified by using Zero Moment Point from the robot modeling. To avoid complex structure and expression, Zero Moment Point of the biped robot used angular acceleration is suggested. To measure the stability of the biped robot, Tilt sensor and gyro sensor are used. Finally, Personal Computer is used computer monitoring and data processing. Most of computation, such as 10 RC servo motor control, joint trajectory generating, ZMP compensation, sense measuring, etc, was used Digital Signal Processor.

  • PDF