• Title/Summary/Keyword: Navigation Path

Search Result 686, Processing Time 0.028 seconds

METRO - A Free Ranging Mobile Robot with a Laser Range Finder (METRO - 레이저 거리계를 장착한 자율 이동로봇)

  • Cha, Young-Youp;Gweon, Dae-Gap
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.2 no.3
    • /
    • pp.200-208
    • /
    • 1996
  • This paper describes the mechanism, guidance, sensor system, and navigation algorithm of METRO, a free ranging mobile robot. METRO is designed for use in structured surroundings or factory environments rather than unstructured natural environments. An overview of the physical configuration of the mobile robot is presented as well as a description of its sensor system, an omnidirectional laser range finder. Except for the global path planning algorithm, a guidance and a navigation algorithm with a local path planning algorithm are used to navigate the mobile robot. In METRO the computer support is divided into a supervisor with image processing and local path planning and a slave with motor control. The free ranging mobile robot is self-controlled and all processing being performed on board.

  • PDF

Mobile Robot Navigation Using Circular Path Planning Algorithm (원 궤적 경로 기법을 이용한 이동로봇의 주행)

  • Han, Sung-Min;Lee, Kang-Woong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.1
    • /
    • pp.105-110
    • /
    • 2009
  • In this paper, we proposed a navigation algorithm of the mobile robot for obstacle avoidance using a circular path planning method. The proposed method makes circular paths in order to avoid obstacles in the front side of the mobile robot. An optimal path for approaching to the target is selected and the linear and angular speeds for stable moving of the mobile robot are controlled. Obstacles are detected by image processing which reduce image data obtained from a web camera. Performance of the proposed algorithm is shown by experiments with application to the Pioneer-2DX mobile robot.

Improvement on the Image Processing for an Autonomous Mobile Robot with an Intelligent Control System

  • Kubik, Tomasz;Loukianov, Andrey A.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.36.4-36
    • /
    • 2001
  • A robust and reliable path recognition system is one necessary component for the autonomous navigation of a mobile robot to help determining its current position in its navigation map. This paper describes a computer visual path-recognition system using on-board video camera as vision-based driving assistance for an autonomous navigation mobile robot. The common problem for a visual system is that its reliability was often influenced by different lighting conditions. Here, two different image processing methods for the path detection were developed to reduce the effect of the luminance: one is based on the RGB color model and features of the path, another is based on the HSV color model in the absence of luminance.

  • PDF

Mobile Robot Navigation using Optimized Fuzzy Controller by Genetic Algorithm

  • Zhao, Ran;Lee, Dong Hwan;Lee, Hong Kyu
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.15 no.1
    • /
    • pp.12-19
    • /
    • 2015
  • In order to guide the robots move along a collision-free path efficiently and reach the goal position quickly in the unknown multi-obstacle environment, this paper presented the navigation problem of a wheel mobile robot based on proximity sensors by fuzzy logic controller. Then a genetic algorithm was applied to optimize the membership function of input and output variables and the rule base of the fuzzy controller. Here the environment is unknown for the robot and contains various types of obstacles. The robot should detect the surrounding information by its own sensors only. For the special condition of path deadlock problem, a wall following method named angle compensation method was also developed here. The simulation results showed a good performance for navigation problem of mobile robots.

A Navigation System for a Patrol Robot in Indoor Environments (실내 환경에서의 경비로봇용 주행시스템)

  • Choi, Byoung-Wook;Lee, Young-Min;Park, Jeong-Ho;Shin, Dong-Kwan
    • The Journal of Korea Robotics Society
    • /
    • v.1 no.2
    • /
    • pp.117-124
    • /
    • 2006
  • In this paper, we develope the navigation system for patrol robots in indoor environment. The proposed system consists of PDA map modelling, a localization algorithm based on a global position sensor and an automatic charging station. For the practical use in security system, the PDA is used to build object map on the given indoor map. And the builded map is downloaded to the mobile robot and used in path planning. The global path planning is performed with a localization sensor and the downloaded map. As a main controller, we use PXA270 based hardware platform in which embedded linux 2.6 is developed. Data handling for various sensors and the localization algorithm are performed in the linux platform. Also, we implemented a local path planning algorithm for object avoidance with ultra sonar sensors. Finally, for the automatic charging, we use an infrared ray system and develop a docking algorithm. The navigation system is experimented with the two-wheeled mobile robot using North-Star localization system.

  • PDF

Navigation algorithm for a mobile robot by using the hybrid structure (하이브리드 구조를 사용한 이동 로봇의 주행 방법)

  • Park, Il;Kwon, Young D.;Lee, Jin S.
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.7
    • /
    • pp.1-10
    • /
    • 1996
  • There are many challenging problems in mobile robot navigation. As an example, a mobile robot may wander around in local minimum and may wiggle when it moves through a narrow corridor. In addition, the real time obstacle avoidance and the posture control of mobile robot are also very improtant problems. To address these problems, a navigation algorithm which is composed o freal time obstacle avoidance algorithm and a global path planner (GPP) that genrates the shortest path is presented. In this paper, the global path planner reduce the calculation time by reducing the dta to be handled. Also it can make a real time obstacle avoidance by using the fuzzy logic inference. So the presented algorithm provide a stable navigastion for the mobile robot when it fall into the unstable navigation.

  • PDF

Development of Augmented Reality Indoor Navigation System based on Enhanced A* Algorithm

  • Yao, Dexiang;Park, Dong-Won;An, Syung-Og;Kim, Soo Kyun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.9
    • /
    • pp.4606-4623
    • /
    • 2019
  • Nowadays modern cities develop in a very rapid speed. Buildings become larger than ever and the interior structures of the buildings are even more complex. This drives a high demand for precise and accurate indoor navigation systems. Although the existing commercially available 2D indoor navigation system can help users quickly find the best path to their destination, it does not intuitively guide users to their destination. In contrast, an indoor navigation system combined with augmented reality technology can efficiently guide the user to the destination in real time. Such practical applications still have various problems like position accuracy, position drift, and calculation delay, which causes errors in the navigation route and result in navigation failure. During the navigation process, the large computation load and frequent correction of the displayed paths can be a huge burden for the terminal device. Therefore, the navigation algorithm and navigation logic need to be improved in the practical applications. This paper proposes an improved navigation algorithm and navigation logic to solve the problems, creating a more accurate and effective augmented reality indoor navigation system.

Optimal Path Planning of Autonomous Mobile Robot Utilizing Potential Field and Fuzzy Logic (퍼지로직과 포텐셜 필드를 이용한 자율이동로봇의 최적경로계획법)

  • Park, Jong-Hoon;Lee, Jae-Kwang;Huh, Uk-Youl
    • Proceedings of the KIEE Conference
    • /
    • 2003.11b
    • /
    • pp.11-14
    • /
    • 2003
  • In this paper, we use Fuzzy Logic and Potential field method for optimal path planning of an autonomous mobile robot and apply to navigation for real-time mobile robot in 2D dynamic environment. For safe navigation of the robot, we use both Global and Local path planning. Global path planning is computed off-line using sell-decomposition and Dijkstra algorithm and Local path planning is computed on-line with sensor information using potential field method and Fuzzy Logic. We can get gravitation between two feature points and repulsive force between obstacle and robot through potential field. It is described as a summation of the result of repulsive force between obstacle and robot which is considered as an input through Fuzzy Logic and gravitation to a feature point. With this force, the robot fan get to desired target point safely and fast avoiding obstacles. We Implemented the proposed algorithm with Pioneer-DXE robot in this paper.

  • PDF

Virtual Navigation of Blood Vessels using 3D Curve-Skeletons (3차원 골격곡선을 이용한 가상혈관 탐색 방안)

  • Park, Sang-Jin;Park, Hyungjun
    • Korean Journal of Computational Design and Engineering
    • /
    • v.22 no.1
    • /
    • pp.89-99
    • /
    • 2017
  • In order to make a virtual endoscopy system effective for exploring the interior of the 3D model of a human organ, it is necessary to generate an accurate navigation path located inside the 3D model and to obtain consistent camera position and pose estimation along the path. In this paper, we propose an approach to virtual navigation of blood vessels, which makes proper use of orthogonal contours and skeleton curves. The approach generates the orthogonal contours and the skeleton curves from the 3D mesh model and its voxel model, all of which represent the blood vessels. For a navigation zone specified by two nodes on the skeleton curves, it computes the shortest path between the two nodes, estimates the positions and poses of a virtual camera at the nodes in the navigation zone, and interpolates the positions and poses to make the camera move smoothly along the path. In addition to keyboard and mouse input, intuitive hand gestures determined by the Leap Motion SDK are used as user interface for virtual navigation of the blood vessels. The proposed approach provides easy and accurate means for the user to examine the interior of 3D blood vessels without any collisions between the camera and their surface. With a simple user study, we present illustrative examples of applying the approach to 3D mesh models of various blood vessels in order to show its quality and usefulness.

Compare with Shotest Path Algorithm in Navigation System (네비게이션 시스템에서의 최단경로 탐색 기법 비교)

  • Park, Seung-Yong;Yu, Ki-Yun
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2010.04a
    • /
    • pp.27-28
    • /
    • 2010
  • Finding shortest path technique running time differs depending on applying of the algorithm and data, and also used a lot of difference in effectiveness depending on the environment occurs. Therefore, the algorithm and environment based on this study, the relationship between optimal solutions and compare running time.

  • PDF