• Title/Summary/Keyword: Navigation Environment Parameters

Search Result 61, Processing Time 0.029 seconds

Database of Navigational Environment Parameters (Water Depth, Sediment Type and Marine Managed Areas) to Support Ships in an Emergency

  • Kim, Tae-Ho;Yang, Chan-Su
    • Journal of Navigation and Port Research
    • /
    • v.43 no.5
    • /
    • pp.302-309
    • /
    • 2019
  • This study introduces the navigational environment database(DB) compiling water depth, sediment type and marine managed areas (MMAs) in coastal waters of South Korea. The water depth and sediment data were constructed by combining their sparse points of electronic navigation chart and survey data with high spatial resolution using the inverse distance weighting and natural neighbor interpolation method included in ArcGIS. The MMAs were integrated based on all shapefiles provided by several government agencies using ArcGIS because the areas should be used in an emergency case of ship. To test the validity of the constructed DB, we conducted a test application for grounding and anchoring zones using a ship accident case. The result revealed each area of possible grounding candidates and anchorages is calculated and displayed properly, excluding obstacle places.

Optimization of parameters in mobile robot navigation using genetic algorithm (유전자 알고리즘을 이용한 이동 로봇 주행 파라미터의 최적화)

  • 김경훈;조형석
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.1161-1164
    • /
    • 1996
  • In this paper, a parameter optimization technique for a mobile robot navigation is discussed. Authors already have proposed a navigation algorithm for mobile robots with sonar sensors using fuzzy decision making theory. Fuzzy decision making selects the optimal via-point utilizing membership values of each via-point candidate for fuzzy navigation goals. However, to make a robot successfully navigate through an unknown and cluttered environment, one needs to adjust parameters of membership function, thus changing shape of MF, for each fuzzy goal. Furthermore, the change in robot configuration, like change in sensor arrangement or sensing range, invokes another adjusting of MFs. To accomplish an intelligent way to adjust these parameters, we adopted a genetic algorithm, which does not require any formulation of the problem, thus more appropriate for robot navigation. Genetic algorithm generates the fittest parameter set through crossover and mutation operation of its string representation. The fitness of a parameter set is assigned after a simulation run according to its time of travel, accumulated heading angle change and collision. A series of simulations for several different environments is carried out to verify the proposed method. The results show the optimal parameters can be acquired with this method.

  • PDF

A Model to Evaluate Jammer Influences on Ranging Measurements

  • Yoo, Won Jae;Kim, Heyone;Hwang, Dong-Hwan;So, Hyoungmin;Lee, Hyung Keun
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.8 no.2
    • /
    • pp.41-47
    • /
    • 2019
  • Recently, number of intentional jamming has increased significantly. If GNSS jammers are activated, user receivers can be largely influenced due to the vulnerable characteristic of the GNSS (Global Navigation Satellite System) signal. When the reception power of the jamming signal and that of the navigation signal are similar, the C/A (Coarse Acquisition) chip delay error can occur in the delay locked loop. To evaluate the jamming effect, a new measurement model is formulated based on previous research works. The new model explains how the jamming to signal ratio affects the ranging measurement accuracy and other parameters. To evaluate the validity of the newly formulated model, the experiment results of the previous research works under actual jamming environment are utilized. By evaluating the consistency of the carrier-to-noise ratio (C/N0) and the position error with the actual jamming environment, the validity of the newly formulated model is verified.

Navigation algorithm of Mobile Robot for helping brain disease patient's gait rehabilitation

  • Cho, Young-Chul;Park, Tong-Jin;Park, Bum-Suk;Han, Chang-Soo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1781-1785
    • /
    • 2004
  • In existing factory, robot has less necessity that consider person. However, person should be considered at design and use of service robot. To service robot can be used in everyday life along with this, more functions are required. Specially, medical service robot needs function that is intelligence function. Especially, to help patient brain disease patient (cerebral hemorrhage, cerebral infarction, imbecility), gait assistance Mobile robot consider ergonomic element necessarily. In order to develop the medical support service robot, the ergonomic design should be considered. This robot ergonomic design parameters are treated in ("evelopment of Medical Support Service Robot Using Ergonomic Design" 2003, ICASS) Fig2 show this Robot. In this study, navigation algorithm of walk assistance robot is analyzed in ergonomic view. Navigation algorithm of Mobile robot can divide by two patterns. Traditional derivative method has shortcoming in dynamic environment. Reactive method is result that react excellently in dynamic environment. However, number of behavior function is limited. So hybrid navigation algorithm was proposed by the alternative way. We consider enough user specificity at navigation algorithm application of gait assistance robot.

  • PDF

Optimal Feature Parameters Extraction for Speech Recognition of Ship's Wheel Orders (조타명령의 음성인식을 위한 최적 특징파라미터 검출에 관한 연구)

  • Moon, Serng-Bae;Chae, Yang-Bum;Jun, Seung-Hwan
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.13 no.2 s.29
    • /
    • pp.161-167
    • /
    • 2007
  • The goal of this paper is to develop the speech recognition system which can control the ship's auto pilot. The feature parameters predicting the speaker's intention was extracted from the sample wheel orders written in SMCP(IMO Standard Marine Communication Phrases). And we designed the post-recognition procedure based on the parameters which could make a final decision from the list of candidate words. To evaluate the effectiveness of these parameters and the procedure, the basic experiment was conducted with total 525 wheel orders. From the experimental results, the proposed pattern recognition procedure has enhanced about 42.3% over the pre-recognition procedure.

  • PDF

Performance Analysis of a Satellite-Based Ionosphere Model for WADGPS under Disturbed Ionosphere Condition

  • So, Hyoungmin;Lee, Kihoon;Kim, Kapjin;Park, Junpyo
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.8 no.4
    • /
    • pp.225-232
    • /
    • 2019
  • The satellite-based ionospheric model consists of local first-order plane function parameters for individual satellites and provides excellent accuracy in the flat ionospheric environment of the Korean Peninsula. This paper analyzes the performance of such model under the rapid changes in the ionosphere. Rapid changes in the ionosphere were observed in Korea from September to October 2014, and a satellite-based ionosphere model was applied to Wide Area Differential GPS (WADGPS) to analyze the navigation performance and the performance of estimating ionospheric delay errors. After processing the test data, it was confirmed that there was a deterioration in navigation performance and extrapolation performance in low-latitude areas and analyzed the cause.

A Proposal of LOS Guidance System of a Ship in Straight-line Navigation under Ocean Currents and Its Optimization Using Genetic Algorithm (해류중 직선 항행하는 선박의 LOS 가이던스 시스템의 제안과 유전 알고리즘을 이용한 최적화)

  • Kim Jong-Hwa;Lee Byung-Kyul
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.29 no.1
    • /
    • pp.124-131
    • /
    • 2005
  • This paper suggests LOS(Line-Of-Sight) guidance system of a surface vessel in straight-line navigation under ocean currents An LOS vector from the vessel to a point on the path between two way-points is decided and a heading angle is calculated to converge to follow the desired path based on the LOS vector This guidance system is called LOS guidance system. The suggested LOS guidance law has parameters to be properly chosen according to navigational environment. Parameters of LOS guidance system are optimized to reduce propulsive energy and/or position error between desired Position and present position of a ship using genetic algorithm which is a strong optimization algorithm with adaptational random search The effectiveness of the suggested LOS guidance system is assured through computer simulations.

Design of Multi-Sensor-Based Open Architecture Integrated Navigation System for Localization of UGV

  • Choi, Ji-Hoon;Oh, Sang Heon;Kim, Hyo Seok;Lee, Yong Woo
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.1 no.1
    • /
    • pp.35-43
    • /
    • 2012
  • The UGV is one of the special field robot developed for mine detection, surveillance and transportation. To achieve successfully the missions of the UGV, the accurate and reliable navigation data should be provided. This paper presents design and implementation of multi-sensor-based open architecture integrated navigation for localization of UGV. The presented architecture hierarchically classifies the integrated system into four layers and data communications between layers are based on the distributed object oriented middleware. The navigation manager determines the navigation mode with the QoS information of each navigation sensor and the integrated filter performs the navigation mode-based data fusion in the filtering process. Also, all navigation variables including the filter parameters and QoS of navigation data can be modified in GUI and consequently, the user can operate the integrated navigation system more usefully. The conventional GPS/INS integrated system does not guarantee the long-term reliability of localization when GPS solution is not available by signal blockage and intentional jamming in outdoor environment. The presented integration algorithm, however, based on the adaptive federated filter structure with FDI algorithm can integrate effectively the output of multi-sensor such as 3D LADAR, vision, odometer, magnetic compass and zero velocity to enhance the accuracy of localization result in the case that GPS is unavailable. The field test was carried out with the UGV and the test results show that the presented integrated navigation system can provide more robust and accurate localization performance than the conventional GPS/INS integrated system in outdoor environments.

A Study on the methodology of Estimation National Spectrum Requirements and Network Resources depending on traffic model variation in future mobile communications service (차세대 이동통신서비스에서 트래픽 모델 변화에 따른 국내 주파수 소요량 및 무선 네트워크 자원 산출 방법에 관한 연구)

  • Chung, Woo-Ghee;Hong, Een-Kee
    • Journal of Advanced Navigation Technology
    • /
    • v.7 no.2
    • /
    • pp.118-127
    • /
    • 2003
  • ITU-R recommends general methodology to provide current and future mobile communication services and 12 parameters to calculate terrestrial spectrum requirements. In this paper we analyzed 12 parameters suggested by ITU-R Recommendation and provided a method to determine a specific parameter value in a specific region. We calculated spectrum requirements and network resources for year 2010 in Korean mobile environment by applying parameter values acquired in parameter analysis method of this paper. And we analyzed the variation of spectrum requirements by calculating spectrum requirements depending on variation of parameters for future mobile communication services.

  • PDF

A Study on a Fuzzy Berth Assignment Programming Problem (퍼지 반박시정계획 문제에 관한 연구)

  • 금종수;이홍걸;이철영
    • Journal of the Korean Institute of Navigation
    • /
    • v.20 no.4
    • /
    • pp.59-70
    • /
    • 1996
  • A berth assignment problem has a direct impact on assessment of charges made to ships and goods. In this paper, we concerned with of fuzzy mathematical programming models for a berth assignment problem to achieved an efficient berth operation in a fuzzy environment. In this paper, we focus on the berth assignment programming with fuzzy parameters which are based on personal opinions or subjective judgement. From the above point of view, assume that a goal and a constraint are given by fuzzy sets, respectively, which are characterized by membership functions. Let a fuzzy decision be defined as the fuzzy set resulting from the intersection of a goal and constraint. This paper deals with fuzziness in all parameters which are expressed by fuzzy numbers. A fuzzy parameter defined by a fuzzy number means a possibility distribution of the parameters. These fuzzy 0-1 integer programming problems are formulated by fuzzy functions whose concept is also called the extension principle. We deal with a berth assignment problem with triangular fuzzy coefficients and propose a branch and bound algorithm for solving the problem. We suggest three models of berth assignment to minimizing the objective functions such as total port time, total berthing time and maximum berthing time by using a revised Maximum Position Shift(MPS) concept. The berth assignment problem is formulated by min-max and fuzzy 0-1 integer programming. Finally, we gave the numerical solutions of the illustrative examples.

  • PDF