• Title/Summary/Keyword: Navier-Stokes 해석

Search Result 986, Processing Time 0.029 seconds

Numerical Analysis of Cavitation Flow Around Hydrofoils (3차원 수중익형 주위의 캐비테이션 유동 전산해석)

  • Kim, S.H.;Koo, T.K.;Park, W.G.;Kim, D.H.
    • The KSFM Journal of Fluid Machinery
    • /
    • v.11 no.3
    • /
    • pp.7-13
    • /
    • 2008
  • The cavitating flow simulation is of practical importance for many engineering systems, such as pump, turbine, nozzle, Infector, etc. In the present work, a solver for two-phase flows has been developed and applied to simulate the cavitating flows past hydrofoils. The governing equation is the two-phase Navier-Stokes equation, comprised of the continuity equation of liquid and vapor phase. The momentum and energy equation is in the mixture phase. The solver employs an implicit, dual time, preconditioned algorithm using finite difference scheme in curvilinear coordinates. An experimental data and other numerical data were compared with the present results to validate the present solver. It is concluded that the present numerical code has successfully accounted for two-phase Navier-Stokes model of cavitation flow.

Analysis of Laminar Flow and Heat Transfer in Asymmetric, Sudden Expansion Channel (비대칭급확대채널의 층류유동 및 열전달 해석)

  • Won, Seung-Ho;Maeng, Joo-Sung;Son, Byung-Jin
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.13 no.1
    • /
    • pp.5-13
    • /
    • 1984
  • This analysis of numerical procedure is prediction of laminar flow and heat transfer at two dimension and steady flow in asymmetric sudden expansion channel. At former study, to analyse the flows with separation, the full Navier-Stokes equation is used, but there are many difficulties to analyse, and although significant progress has been made in the development of efficient computational methods for the Navier-Stokes equations, very large computation times are still required. In case of reward-facing flow, boundary-layer equation is used instead of full Navier-Stokes equation to analyse velocity fields, and result of this numerical analysis is good agreement with the given experimental study. In this case, since the computer time required for the boundary-layer calculation is an order of magnitude less than required for the solution of the full Navier-Stokes equation, this boundary-layer model provides a good approximate solution.

  • PDF

Numerical Simulation of Wave Deformation due to a Submerged Structure with a Second-order VOF Method (2차 정확도 VOF기법을 활용한 수중구조물에 의한 파랑변화 예측)

  • Ha, Tae-Min;Cho, Yong-Sik
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.10 no.1
    • /
    • pp.111-117
    • /
    • 2010
  • A three-dimensional numerical model is employed to investigate wave deformation due to a submerged structure. The three-dimensional numerical model solves the spatially averaged Navier-Stokes equations for two-phase flows. The LES(large-eddy-simulation) approach is adopted to model the turbulence effect by using the Smagorinsky SGS(sub-grid scale) closure model. The two-step projection method is employed in the numerical solutions, aided by the Bi-CGSTAB technique to solve the pressure Poisson equation for the filtered pressure field. The second-order accurate VOF(volume-of-fluid) method is used to track the distorted and broken free surface. A simple linear wave is generated on a constant depth and compared with analytical solutions. The model is then applied to study wave deformation due to a submerged structure and the predicted results are compared with available laboratory measurements.

Aerodynamic Simulation of Rotor-Airframe Interaction by the Momentum Source Method (모멘텀 소스 방법을 이용한 로터-기체간의 간섭작용 해석)

  • Kim, Young-Hwa;Park, Seung-O
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.2
    • /
    • pp.113-120
    • /
    • 2009
  • To numerically simulate aerodynamics of rotor-airframe interaction in a rigorous manner, we need to solve the Navier-Stokes system for a rotor-airframe combination in a single computational domain. This imposes a computational burden since rotating blades and a stationary body have to be simultaneously dealt with. An efficient alternative is a momentum source method in which the action of rotor is approximated as momentum source in a stationary mesh system built around the airframe. This makes the simulation much easier. The magnitude of the momentum source is usually evaluated by the blade element theory, which often results in a poor accuracy. In the present work, we evaluate the momentum source from the simulation data by using the Navier-Stokes equations only for a rotor system. Using this data, we simulated the time-averaged steady rotor-airfame interaction and developed the unsteady rotor-airframe interaction. Computations were carried out for the simplified rotor-airframe model (the Georgia Tech configuration) and the results were compared with experimental data. The results were in good agreement with experimental data, suggesting that the present approach is a usefull method for rotor-airframe interaction analysis.

Static Analysis of Gas Bearing with Ultra Low Clearance by the Direct Numerical Solution Method (극소 공기막을 갖는 공기베어링의 직접수치해법을 이용한 정적해석)

  • Park, Sang-Sin;Chang, In-Bae;Hwang, Pyung;Han, Dong-Chul
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.1
    • /
    • pp.120-126
    • /
    • 1991
  • An expanded scheme of a direct numerical solution method for solving the Navier-Stokes equation considering the modified boundary conditions for gas lubrication with ultra low clearance at high .LAMBDA. region is presented. Many examples are calculated by this scheme and their results are compared to the previous solutions using P$^{2}$H$^{[-992]}$ . This scheme has the advantages of fast calculation time and stable convergence in high .LAMBDA. region, and gives very good results in the case of fluid film thickness discontinuity.

Comparative Study of the Navier-Stokes Equation & the Reynolds Equation in Spool Valve Analysis Considering Cavitation (캐비테이션을 고려한 스풀밸브 해석에서 Navier-Stokes 방정식과 Reynolds 방정식에 의한 비교 연구)

  • Hong, Sung-Ho;Son, Sang-Ik;Kim, Kyung-Woong
    • Tribology and Lubricants
    • /
    • v.29 no.5
    • /
    • pp.275-285
    • /
    • 2013
  • The Reynolds equation is commonly used to investigate the lubrication characteristics of a spool valve. However, the applicability of the Reynolds equation is questionable for analyzing a spool valve because cavitation often occurs in the grooves of the valve and the depth of a groove is much higher than the clearance in most cases. In this study, the validity of the Reynolds equation in the spool valve analysis is investigated by comparing the results obtained from the Reynolds equation and those obtained from the Navier-Stokes equation. The results are compared in terms of the lateral forces, friction forces, and volume flow rates (leakages). A significant difference of more than 20% is found in the lateral forces in cases where cavitation occurs and there are many grooves. Therefore, the Navier-Stokes equation should be used to investigate the lubrication characteristics of a spool valve when cavitation occurs and when the spool valve contains many grooves.

Design Optimization of A Multi-Blade Centrifugal Fan with Navier-Stokes Analysis and Response Surface Method (삼차원 Navier-Stokes 해석과 반응면기법을 이용한 원심다익송풍기의 최적설계)

  • Seo, Seoung-Jin;Kim, Kwang-Yong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.10
    • /
    • pp.1457-1463
    • /
    • 2003
  • In this paper, the response surface method using three-dimensional Navier-Stokes analysis to optimize the shape of a multi-blade centrifugal fan, is described. For numerical analysis, Reynolds-averaged Navier-Stokes equations with standard k - c turbulence model are transformed into non-orthogonal curvilinear coordinate system, and are discretized with finite volume approximations. Due to the large number of blades in this centrifugal fan, the flow inside of the fan is regarded as steady flow by introducing the impeller force models for economic calculations. Linear Upwind Differencing Scheme(LUDS) is used to approximate the convection terms in the governing equations. SIMPLEC algorithm is used as a velocity-pressure correction procedure. Design variables, location of cur off, radius of cut off, expansion angle of scroll and width of impeller were selected to optimize the shapes of scroll and blades. Data points for response evaluations were selected by D-optimal design, and linear programming method was used for the optimization on the response surface. As a main result of the optimization, the efficiency was successfully improved. It was found that the optimization process provides reliable design of this kind of fans with reasonable computing time.

A FEASIBILITY STUDY OF A NAVIER-STOKES FLOW SOLVER USING A KINETIC BGK SCHEME IN TRANSITIONAL REGIME (Kinetic BGK 기법을 이용한 Navier-Stokes 유동 해석자의 천이 영역 적용성 연구)

  • Cho, M.W.;Yang, T.H.;Kwon, O.J.
    • Journal of computational fluids engineering
    • /
    • v.20 no.3
    • /
    • pp.54-61
    • /
    • 2015
  • In the present study, a flow solver using a kinetic BGK scheme was developed for the compressible Navier-Stokes equation. The kinetic BGK scheme was used to simulate flow field from the continuum up to the transitional regime, because the kinetic BGK scheme can take into account the statistical properties of the gas particles in a non-equilibrium state. Various numerical simulations were conducted by the present flow solver. The laminar flow around flat plate and the hypersonic flow around hollow cylinder of flare shape in the continuum regime were numerically simulated. The numerical results showed that the flow solver using the kinetic BGK scheme can obtain accurate and robust numerical solutions. Also, the present flow solver was applied to the hypersonic flow problems around circular cylinder in the transitional regime and the results were validated against available numerical results of other researchers. It was found that the kinetic BGK scheme can similarly predict a tendency of the flow variables in the transitional regime.

Design Optimization of A Multi-Blade Centrifugal Fan with Navier-Stokes Analysis (삼차원 Navier-Stokes 해석을 이용한 원심다익송풍기의 최적설계)

  • Seo, Seoung-Jin;Kim, Kwang-Yong
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.2157-2161
    • /
    • 2003
  • In this paper, the response surface method using three-dimensional Navier-Stokes analysis to optimize the shape of a forward-curved blades centrifugal fan, is described. For numerical analysis, Reynolds-averaged Navier-Stokes equations with standard k-e turbulence model are transformed into non-orthogonal curvilinear coordinate system, and are discretized with finite volume approximations. Due to the large number of blades in forward-curved blades centrifugal fan, the flow inside of the fan is regarded as steady flow by introducing the impeller force models for economic calculations. Linear Upwind Differencing Scheme(LUDS) is used to approximate the convection terms in the governing equations. SIMPLEC algorithm is used as a velocity-pressure correction procedure. Design variables, location of cur off, radius of cut off, expansion angle of scroll and width of impeller were selected to optimize the shapes of scroll and blades. Data points for response evaluations were selected by D-optimal design, and linear programming method was used for the optimization on the response surface. As a main result of the optimization, the efficiency was successfully improved. It was found that the optimization process provides reliable design of this kind of fans with reasonable computing time

  • PDF

A Comparative Study of the Navier-Stokes Equation & the Reynolds Equation in Spool Valve Analysis (스풀밸브 해석에서 Navier-Stokes 방정식과 Reynolds 방정식에 의한 비교 연구)

  • Hong, Sung-Ho;Son, Sang-Ik;Kim, Kyung-Woong
    • Tribology and Lubricants
    • /
    • v.28 no.5
    • /
    • pp.218-232
    • /
    • 2012
  • In a spool valve analysis, the Reynolds equation is commonly used to investigate the lubrication characteristics. However, the validity of the Reynolds equation is questionable in a spool valve analysis because cavitation often occurs in the groove and the depth of the groove is much higher than the clearance in most cases. Therefore, the validity of the Reynolds equation in a spool valve analysis is investigated by comparing the results obtained from the Reynolds equation and the Navier-Stokes equation. Dimensionless parameters are determined from a nondimensional form of the governing equations. The differences between the lateral force, friction force, and volume flow rate (leakage) obtained by the Reynolds equation and those obtained by the Navier-Stokes equation are discussed. It is shown that there is little difference (less than 10%), except in the case of a spool valve with many grooves where no cavitation occurs in the grooves. In most cases, the Reynolds equation is effective for a spool valve analysis under a no cavitation condition.