• 제목/요약/키워드: Navier-Stokes 유체

검색결과 935건 처리시간 0.022초

CFD를 이용한 표면 거칠기에 따른 선박의 저항 성능 추정에 관한 연구 (A Study on Predicting Ship Resistance Performance due to Surface Roughness Using CFD)

  • 석준;박종천;신명수;김성용
    • 대한조선학회논문집
    • /
    • 제53권5호
    • /
    • pp.400-409
    • /
    • 2016
  • In recent, shipping companies have made an enormous effort to improve the operation of vessel in various approaches, due to recession of shipping market and increasing competition among shipping companies. One of important parameters for improving the efficiency of vessel is the resistance performance that consist of friction and residual resistance. Especially, it is recognized that the friction resistance tends to be affected by conditions of vessel’s surface and occupies approximately 70~90% of the total resistance for slow speed ships. In general, the surface of vessel is covered with various type of paint to reduce fouling and corrosion. As time goes by, however, it is so hull roughness would be increased by fouling over the wetted surface that anti-fouling paints, such as CDP(Controlled Depletion Paint), Tin-Free SPC(Self Polishing Co-polymer) or Foul Release, are applied evenly on the hull surface. Nevertheless, these anti-fouling paints could not prevent fouling absolutely. A fundamental study on evaluating ship resistance performance variation due to hull roughness has been performed using a commercial software, Star-CCM+, which solves the continuity and Navier-Stokes equations for incompressible and viscous flow. The results of present simulation for plate are compared with some experimental data available and the effect of surface roughness to ship resistance performance is discussed.

선박의 저항 및 자항성능 해석을 위한 수치기법 개발 (Development of a Numerical Method for the Evaluation of Ship Resistance and Self-Propulsion Performances)

  • 김진;박일룡;김광수;반석호;김유철
    • 대한조선학회논문집
    • /
    • 제48권2호
    • /
    • pp.147-157
    • /
    • 2011
  • A RANS(Reynolds averaged Navier-Stokes) based numerical method is developed for the evaluation of ship resistance and self-propulsion performances. In the usability aspect of CFD for the hull form design, the field grid around practical hull forms is generated by solving a grid Poisson equation based on the hull surface grid generated from station offsets and centerline profile. A body force technique is introduced to model the effects of the propeller in which the propeller loads are obtained from potential flow analysis using an unsteady lifting surface method. The free surface is captured by using a two-phase level-set method and the realizable $k-{\varepsilon}$ model is used for turbulence closure. The hull attitude in vertical plane, i.e., trim and sinkage, is calculated by using a quasi-steady method and then considered in the computation by translating and rotating the grid system according to the values. For the validation of the proposed method, the numerical results of resistance tests for KCS, KLNG, and KVLCC1 and of self-propulsion test for KCS are compared with experimental data.

전가동타와 비대칭타의 유체동역학적 특성 및 속도성능 (Hydrodynamic Characteristics and Speed Performance of a Full Spade and a Twisted Rudder)

  • 최정은;김정훈;이홍기;박동우
    • 대한조선학회논문집
    • /
    • 제47권2호
    • /
    • pp.163-177
    • /
    • 2010
  • This article examines hydrodynamic characteristics and speed performances of a ship attached with a full spade and a twisted rudder based on a computational method. For this study, a 13,100 TEU container carrier is selected. The turbulent flows around a ship are analyzed by solving the Reynolds-averaged Navier-Stokes equation together with the application of Reynolds stress turbulence model. The computations are carried out at the conditions of rudder, bare hull, hull-rudder and hull-propeller-rudder. An asymmetric body-force propeller is applied. The speed performance is predicted by the model-ship performance analysis method of the revised ITTC'78 method. The hydrodynamic forces are compared in both rudder-open-water and self-propulsion conditions. The flow characteristics, the speed performance including propulsion factors and the rudder-cavitation performance are also compared. The model tests are conducted at a deep-water towing tank to validate the computational predictions. The computational predictions show that the twisted rudder is superior to the full spade rudder in the respect of the speed and the cavitation performances.

가스 파이프라인용 볼 밸브의 수치해석 모델 평가 (Evaluation of Numerical Model of a Ball Valve used for a Gas Pipeline)

  • 김철규;이경근;임태균;장춘만
    • 한국수소및신에너지학회논문집
    • /
    • 제27권6호
    • /
    • pp.764-772
    • /
    • 2016
  • This paper presents on the evaluation of numerical analysis model of a ball valve used for a gas pipeline. The ball valve has important role to control the gas flow of the pipeline as well as safety operation to prevent gas explosion at the emergency. For the validation of numerical simulation, the computational domains are introduced three different types: a hexahedron chamber connected to a pipeline outlet without considering the geometry of pressure tubes, a pipeline only considered the geometry of pressure tubes, and a pipeline connected both of the a hexahedron chamber and pressure tubes. The commercial code, SC/Tetra, is introduced to solve the three-dimensional steady-state Reynolds-averaged Navier-Stokes analysis in the present study. The valve flow coefficient and valve loss coefficient with respect to the valve opening rate of 30%, 50%, and 70% are compared with experimental results. Throughout the numerical analysis for the three analysis domains, pressure computed along the pipeline is affected by computational domains. It is noted pressure obtained by the computational model considering both of the a hexahedron chamber and pressure tubes has a relatively good agreement to the experimental data.

2차원 초음속 노즐의 과대팽창 유동 특성 (Flow Characteristics of 2 Dimensional Supersonic Nozzle in Overexpanded Conditions)

  • 김성돈;정인석;최정열
    • 한국추진공학회지
    • /
    • 제6권2호
    • /
    • pp.1-7
    • /
    • 2002
  • 추진기관은 노즐을 통해 추력을 발생하며 축소-확대 형상의 초음속 노즐에서는 노즐의 설계 팽창비가 내부 유동의 전압력과 배압의 압력비보다 매우 클 때 충격파의 발생과 함께 경계층 박리를 유발한다. 노즐 내부에서의 충격파 발생과 유동의 박리는 주어진 유동의 압력비에 가장 적합한 노즐형상을 구현하는 것으로 실제의 구조적 노즐의 형상보다 짧은 노즐에서 나타나는 유동과 같은 현상을 보인다. 수치 해석적 방법으로 고정된 형상의 2차원 노즐 내부의 충격파와 경계층 박리 현상에 관한 연구를 수행하였고 Hunter가 행한 실험적 연구와 비교하였다. 수치해석은 TVD 기법을 이용한 압축성 유체 해석 코드와 SST 2방정식 난류 모델을 이용하여 수행되었다. 낮은 압력비에서의 충격파와 경계층과의 상호작용에 의한 $\lambda$형태의 충격파 시스템을 잘 보여주고 있고 추력 값의 비교를 통해 고정된 형상의 노즐을 이용하여 필요한 운용범위를 충족할 수 있음을 알 수 있었다.

사보니우스 소형풍력터빈 수치해석용 격자시스템 평가 (Evaluation of a Grid System for Numerical Analysis of a Small Savonius Wind Turbine)

  • 김철규;이상문;전석윤;윤준용;장춘만
    • 한국수소및신에너지학회논문집
    • /
    • 제27권5호
    • /
    • pp.547-553
    • /
    • 2016
  • This paper presents the effect of a grid system on the performance of a small Savonius wind turbine installed side-by-side. Turbine performance is compared using three different grid systems; tetrahedral grid having a concentrated circular grid around turbine rotors, the tetrahedral grid having a concentrated rectangular grid around turbine rotors and the symmetric grid having a concentrated tetrahedral grid near the turbine rotor blades and a hexahedral grid. The commercial code, SC/Tetra has been used to solve the three-dimensional unsteady Reynolds-averaged Navier-Stokes analysis in the present study. The Savonius turbine rotor has a rotational diameter of 0.226m and an aspect ratio of 1.0. The distance between neighboring rotor tips keeps the same length of the rotor diameter. The variations of pressure and power coefficient are compared with respect to blade rotational angles and rotating frequencies of the turbine blade. Throughout the comparisons of three grid systems, it is noted that the symmetric grid having a concentrated tetrahedral grid near the turbine rotor blades and a hexahedral grid has a stable performance compared to the other ones.

Optimization of a Single-Channel Pump Impeller for Wastewater Treatment

  • Kim, Joon-Hyung;Cho, Bo-Min;Kim, Youn-Sung;Choi, Young-Seok;Kim, Kwang-Yong;Kim, Jin-Hyuk;Cho, Yong
    • International Journal of Fluid Machinery and Systems
    • /
    • 제9권4호
    • /
    • pp.370-381
    • /
    • 2016
  • As a single-channel pump is used for wastewater treatment, this particular pump type can prevent performance reduction or damage caused by foreign substances. However, the design methods for single-channel pumps are different and more difficult than those for general pumps. In this study, a design optimization method to improve the hydrodynamic performance of a single-channel pump impeller is implemented. Numerical analysis was carried out by solving three-dimensional steady-state incompressible Reynolds-averaged Navier-Stokes equations using the shear stress transport turbulence model. As a state-of-the-art impeller design method, two design variables related to controlling the internal cross-sectional flow area of a single-channel pump impeller were selected for optimization. Efficiency was used as the objective function and was numerically assessed at twelve design points selected by Latin hypercube sampling in the design space. An optimization process based on a radial basis neural network model was conducted systematically, and the performance of the optimum model was finally evaluated through an experimental test. Consequently, the optimum model showed improved performance compared with the base model, and the unstable flow components previously observed in the base model were suppressed remarkably well.

선박 프로펠러 후류 및 조류에 의해 발생한 힘이 가두리 양식장 구조물에 미치는 영향에 관한 연구 (On Study of the Effects of External Forces on the Fish Farm Structure Due to Following Flows and Currents in Fully Operated Ship's Propeller)

  • 이귀주;라영곤;김경화;류태호
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2002년도 추계학술대회 논문집
    • /
    • pp.245-250
    • /
    • 2002
  • This report describes the effects of following flaws due to ship's propeller on the fish farm structure when the ship's propeller is operated in full power. This study is applied an incompressible newtonian fluid theory, which is governed the Navier-Stokes equation. For the numerical solution, Neumann equation are applied as the boundary conditions. The result shows that the flow velocity near the fish farm is 1.0 m/sec. The actual measurement carries out by using propeller type velocimeter in order to measure the velocity of following flows and currents around the fish farm area. The result shows that the maximum velocity near the fish farm structure is 1.2 m/sec in depth of 1.5 m. This velocity is used for calculation of external force on the fish farm structure. The results of structural strength of the fish farm structures show that the actual maximum bending moment and bending stress are less than the damage strength of material. So the fish farm structure is not affected by the following flows and currents of ship's propeller.

  • PDF

CFD 기반 가스터빈 엔진 모사 코드 개발 (Development of Gas Turbine Engine Simulation Program Based on CFD)

  • 진상욱;김귀순;최정열;안이기;양수석;김재환
    • 한국추진공학회지
    • /
    • 제13권2호
    • /
    • pp.42-53
    • /
    • 2009
  • 가스터빈 엔진을 모사하기 위한 프로그램을 2차원 CFD 코드를 기반으로 개발 하였다. 압축기와 터빈은 k-$\omega$ SST 난류 모델의 2차원 NS(Navier Stokes) 코드를 이용하였고, 연소기는 lumped method 화학 평형 코드를 바탕으로 완전 혼합 상태에서 연소효율 100%로 가정된 케로신 공기 반응의 생성물 중 대표적인 10종류를 몰분율을 계산, 당량비에 따른 연소기 온도를 예측하였다. 압축기, 터빈에서 로터의 회전에 의한 비정상 유동 현상은 mixing-plane 기법을 이용한 경계면 처리로 그 효과를 나타내었고, 압축기는 연소기로 온도 압력을 주고, 연소기는 터빈으로 온도와 질유량을 전달하나 압력의 변화가 없는 것으로 가정하였다. 이를 바탕으로 아음속 조건에서의 압축기 입구 조건과 터빈 출구 조건, 회전수, 연소기의 당량비를 주는 것만으로 엔진의 성능이 계산 될 수 있는 통합 코드를 구성하였다.

상용 CFD 프로그램을 이용한 풍력터빈 축소모델 출력계수 검증 및 후류 해석 (Validation of Power Coefficient and Wake Analysis of Scaled Wind Turbine using Commercial CFD Program)

  • 김병수;백인수;유능수
    • 한국태양에너지학회 논문집
    • /
    • 제35권1호
    • /
    • pp.35-43
    • /
    • 2015
  • A numerical simulation on the wake flow of a wind turbine which is a scaled version of a multi-megawatt wind turbine has been performed. Two different inlet conditions of averaged wind speed including one below and one above the rated wind speed were used in the simulation. Steady-state pitch angles of the blade associated with the two averaged wind speeds were imposed for the simulation. The steady state analysis based on the Reynolds averaged Navier-Stokes equations with the method of frame motion were used for the simulation to find the torque of the rotor and the wake field behind the wind turbine. The simulation results were compared with the results obtained from the wind tunnel testing. From comparisons, it was found that the simulation results on the turbine power are pretty close to the experimental values. Also, the wake results were relatively close to the experimental results but there existed some discrepancy in the shape of velocity deficit. The reason for the discrepancy is considered due to the steady state solution with the frame motion method used in the simulation. However, the method is considered useful for solutions with much reduced calculation time and reasonably good accuracy compared to the transient analysis.