• 제목/요약/키워드: Navier solutions

검색결과 311건 처리시간 0.019초

A Numerical Simulation of a Multi-phase Flow mixed with Air and Water around an Automobile Tire

  • 우종식;김항우
    • 한국자동차공학회논문집
    • /
    • 제6권4호
    • /
    • pp.101-107
    • /
    • 1998
  • A three-dimensional multi-phase flow is simulated around a smooth tire. This simulation is conducted by solving Navier-Stokes equation with a k-$\varepsilon$ turbulent model. The numerical calculations are carried out by modeling a multi-phase free surface flow mixed with air and water at the inlet. The numerical solutions show an intuitively resonable behavior of water around a moving tire. The calculated pressure around the tire surface along the moving direction is presented. The moving velocities of the tire are chosen to be 30, 40, 60, and 70 km/h. The numerically simulated pressures around the tire are compared with existing experimental data. The comparison shows a new possible tool of analyzing a hydroplaning phenomenon for an automobile tire by means of a computational fluid dynamics.

  • PDF

Transonic flow past a Whitcomb airfoil with a deflected aileron

  • Kuzmin, Alexander
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제14권3호
    • /
    • pp.210-214
    • /
    • 2013
  • The sensitivity of transonic flow past a Whitcomb airfoil to deflections of an aileron is studied at free-stream Mach numbers from 0.81 to 0.86 and vanishing or negative angles of attack. Solutions of the Reynolds-averaged Navier-Stokes equations are obtained with a finite-volume solver using the $k-{\omega}$ SST turbulence model. The numerical study demonstrates the existence of narrow bands of the Mach number and aileron deflection angles that admit abrupt changes of the lift coefficient at small perturbations. In addition, computations reveal free-stream conditions in which the lift coefficient is independent of aileron deflections of up to 5 degrees. The anomalous behavior of the lift is explained by interplay of local supersonic regions on the airfoil. Both stationary and impulse changes of the aileron position are considered.

COMPUTATIONAL SIMULATIONS OF FLUID FLOWS

  • Kunio Kuwahara;Kwak, Ho-Sang
    • Journal of Theoretical and Applied Mechanics
    • /
    • 제2권1호
    • /
    • pp.15-29
    • /
    • 1996
  • A fair portion of the dream to acquire the solutions to the Navier-Stokes equations has come true through the remarkable development of computers and solution algorithms in recent years. However, it is also true that there still remain serious hurdles in simulating general fluid flows. A few numerical trials to overcome the existing difficulties are introduced. The issues in numerical simulations of high-Reynolds-number flows, flows characterized by complex body geometry, and multi-phase flows, are scrutinized. The future of computational fluid dynamics as a promising tool for flow analyses is illuminated by this review.

초음속 노즐 내부 유동장의 가열에 의한 천이 특성에 대한 연구 (A Study on Transient Characteristics of Flow Caused by Heat Addition in Supersonic Nozzle)

  • 정진도;김장우
    • 대한기계학회논문집B
    • /
    • 제29권1호
    • /
    • pp.80-86
    • /
    • 2005
  • This study presents numerical solutions of the two-dimensional Navier-Stokes equations for supersonic unsteady flow in a convergent-divergent nozzle with heat addition. The TVD scheme in generalized coordinates is employed in order to calculate the moving shock waves caused by thermal choking. We discuss on transient characteristics, start and unstart phenomena, fluctuations of specific thrust caused by thermal choking and viscous effects. We prove that the control of separation of boundary layer is the most important key problem to prevent the thermal choking.

등온사각빔이 부착된 채널에서의 대류열전달 (Convective Heat Transfer in a Channel with Isothermal Rectangular Beams)

  • 이재신;권순석
    • 설비공학논문집
    • /
    • 제7권1호
    • /
    • pp.63-72
    • /
    • 1995
  • Convective heat transfer in a two-dimensional horizontal and vertical channel with isothermal rectangular beams attached to one adiabatic wall is investigated from the numerical solution of Navier-Stokes and energy equations. The solutions have been obtained for dimensionless beam spacings, S/L=1~4, aspect ratios of beam, H/B=0.25~4, Reynolds numbers, Re=50~1000 and Grashof numbers, $Gr=0{\sim}5{\times}10^4$. The total mean Nusselt number, Nu_T for horizontal and vertical channels shows same value at Gr=0. As Gr increases, Nu_T for horizontal channel increases, but Nu_T for vertical channel shows similar value at S/L=2, H/B=0.25, Re=100. The total mean Nusselt number for horizontal channel is higher than that for vertical channel. As H/B increases, $Nu_T$ for both channel decrease at $Gr=10^4$, Re=100.

  • PDF

NACA 0015 익형에 대한 Gurney 플랩의 영향 (Effect of the Gurney Flap on NACA 0015 Airfoil)

  • 유능수;이장호
    • 산업기술연구
    • /
    • 제20권B호
    • /
    • pp.71-76
    • /
    • 2000
  • A numerical investigation was performed to determine the effect of the Gurney flap on NACA 0015 airfoil. A Navier-Stokes code. FLUENT, was used to calculate the flow field about the airfoil. The fully-turbulent results were obtained using the standard ${\kappa}-{\varepsilon}$ two-equation turbulence model. The numerical solutions showed the Gurney flap increased both lift and drag. These results suggested that the Gurney flap served to increase the effective camber of the airfoil. Gurney flap provided a significant increase in lift-to-drag ratio relatively at low angle of attack and for high lift coefficient. It turned out that 0.75% chord size of flap was best. The numerical results exhibited detailed flow structures at the trailing edge and provided a possible explanation for the increased aerodynamic performance.

  • PDF

AUSMPW+ 수치기법과 반응기체 모델을 이용한 극초음속 충격파-충격파 상호작용 수치해석 (Numerical Analysis of Hypersonic Shock-Shock Interaction using AUSMPW+ Scheme and Gas Reaction Models)

  • 이준호;김종암;노오현
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 1999년도 춘계 학술대회논문집
    • /
    • pp.29-34
    • /
    • 1999
  • A two-dimensional Navier-Stokes code based on AUSMPW+ scheme has been developed to simulate the hypersonic flowfield of hypersonic shock-shock interaction. AUSMPW+ scheme is a new hybrid flux splitting scheme, which is improved by introducing pressure-based weight functions to eliminate the typical drawbacks of AUSM-type schemes, such as non-monotone pressure solutions. To study the real gas effects, three different gas models are taken into account in this paper: perfect gas, equilibrium flow and nonequilibrium flow. It has been investigated how each gas model influences on the peak surface loading, such as wall pressure and wall heat transfer, and unsteady flowfield structure in the region of shock-shock interaction. With the results, the value of peak pressure is not sensitive to the real gas effects nor to the wall catalyticity. However, the value of peak heat transfer rates is affected by the real gas effects and the wall catalyticity. The structure of the flowfield also changes drastically in the presence of real gas effects.

  • PDF

곧은 사각채널을 통과하는 물성 변화가 큰 유동에 대한 수치해석 (NUMERICAL STUDIES ON FLOWS WITH STRONG PROPERTY VARIATIONS THROUGH STRAIGHT RECTANGULAR CHANNELS)

  • 최남정;최윤호
    • 한국전산유체공학회지
    • /
    • 제12권4호
    • /
    • pp.74-84
    • /
    • 2007
  • The flowfield characteristics in a straight rectangular channel have been investigated through a numerical model to analyze the regenerative cooling system that is used in rocket engine cooling. The supercritical hydrogen coolant introduces strong property variations that have a major influence on the developing flow and heat transfer characteristics. Of particular interest is the improved understanding of the physical characteristics of such flows through parametric studies. The approach used is a numerical solution of the full Navier-Stokes equations in the three dimensional form including the arbitrary equation of state and property variations. The present study compares constant and variable property solutions for both laminar and turbulent flow. For laminar flow, the variation of aspect ratio is examined, while for turbulent flow, the effects of variation of channel length and Reynolds number are discussed.

A refined hyperbolic shear deformation theory for bending of functionally graded beams based on neutral surface position

  • Zouatnia, Nafissa;Hadji, Lazreg;Kassoul, Amar
    • Structural Engineering and Mechanics
    • /
    • 제63권5호
    • /
    • pp.683-689
    • /
    • 2017
  • In this paper, a hyperbolic shear deformation theory is presented for bending analysis of functionally graded beams. This theory used in displacement field in terms of thickness co-ordinate to represent the shear deformation effects and does not require shear correction factor, and gives rise to transverse shear stress variation such that the transverse shear stresses vary parabolically across the thickness satisfying shear stress free surface conditions. The governing equations are derived by employing the virtual work principle and the physical neutral surface concept. A simply supported functionally graded beam subjected to uniformly distributed loads and sinusoidal loads are consider for detail numerical study. The accuracy of the present solutions is verified by comparing the obtained results with available published ones.

비정렬 삼각격자 유한체적법에 의한 비압축성유동 해석 (Finite volume method for incompressible flows with unstructured triangular grids)

  • 김종태;김용모
    • 대한기계학회논문집
    • /
    • 제19권11호
    • /
    • pp.3031-3040
    • /
    • 1995
  • Two-dimensional incompressible Navier-Stokes equations have been solved by the node-centered finite volume method with the unstructured triangular meshes. The pressure-velocity coupling is handled by the artificial compressibility algorithm due to its computational efficiency associated with the hyperbolic nature of the resulting equations. The convective fluxes are obtained by the Roe's flux difference splitting scheme using edge-based connectivities and higher-order differences are achieved by a reconstruction procedure. The time integration is based on an explicit four-stage Runge-Kutta scheme. Numerical procedures with local time stepping and implicit residual smoothing have been implemented to accelerate the convergence for the steady-state solutions. Comparisons with experimental data and other numerical results have proven accuracy and efficiency of the present unstructured approach.