• Title/Summary/Keyword: Naval Forces

Search Result 572, Processing Time 0.023 seconds

Probabilistic Prediction of Stability of Ship by Risk Based Approach

  • Long, Zhan-Jun;Lee, Seung-Keon;Lee, Sung-Jong;Jeong, Jae-Hun
    • Journal of Navigation and Port Research
    • /
    • v.33 no.4
    • /
    • pp.255-261
    • /
    • 2009
  • Prediction of the stability for ships is very complex in reality. In this paper, risk based approach is applied to predict the probability of capsize for a certified ship, which is effected by the forces of sea especially the wave loading Safety assessment and risk analysis process are also applied for the probabilistic prediction of stability for ships. The probability of shipsencountering different waves at sea is calculated by the existed statistics data and risk based models. Finally, ship capsizing probability is calculated according to single degree of freedom(SDF) rolling differential equation and basin erosion theory of nonlinear dynamics. Calculation results show that the survival probabilities of ship excited by the forces of the seas, especially in the beam seas status, can be predicted by the risk based method.

Experimental Study on Hydrodynamic Coefficients of Autonomous Underwater Glider Using Vertical Planar Motion Mechanism Test (VPMM 시험을 통한 무인 수중 글라이더 모형의 동유체력 계수 추정에 관한 연구)

  • Jung, Jin-Woo;Jeong, Jae-Hun;Kim, In-Gyu;Lee, Seung-Keon
    • Journal of Ocean Engineering and Technology
    • /
    • v.28 no.2
    • /
    • pp.119-125
    • /
    • 2014
  • A vertical planar motion mechanism(VPMM) test was used to increase the prediction accuracy for the maneuverability of an underwater glider model. To improve the accuracy of the linear hydrodynamic coefficients, the analysis techniques of a pure heave test and pure pitch test were developed and confirmed. In this study, the added mass and damping coefficient were measured using a VPMM test. The VPMM equipment provided pure heaving and pitching motions to the underwater glider model and acquired the forces and moments using load cells. As a result, the hydrodynamic coefficients of the underwater glider could be acquired after a Fourier analysis of the forces and moments. Finally, a motion control simulation was performed for the glider control system, and the results are presented.

Analysis of a Two-Dimensional Section of Deforming Yacht Sails (변형을 고려한 요트 세일의 2차원 단면 해석)

  • Lee, Hee-Bum;Rhee, Shin-Hyung;Yoo, Jae-Hoon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.48 no.4
    • /
    • pp.308-316
    • /
    • 2011
  • Although a yacht sails operate with large displacement due to very thin thickness, many studies for flow around yacht sails have not considered the sail deformation. The sail deformation not only caused a change in the center of effect(CE) on the sail but also a change in the thrust of the sail. The change of the CE and thrust affects the center of lateral resistance(CLR) and side forces of the hull, and the balance of the yacht. These changes affect the motion of the yacht which changes the velocity of the yacht. Thus, when analyzing the flow around yacht sails, the sail deformation should be considered. In the present study, fluid-structure-interaction(FSI) analysis of a two dimensional section of yacht sails was performed to consider the effects of sail deformation on the lift and drag performance. FSI and moving mesh methods were studied. Computational methods were verified using benchmark test cases such as the flow around horizontal and vertical cantilever beams. Shape deformation, pressure distribution, lift forces and separation flow were compared for both rigid and deformable sail.

Effects of Propeller Forces on the Propeller Shaft Bearing during Going Straight and Turning of Ship (선박의 직진과 선회 시의 프로펠러 하중이 프로펠러 축 베어링에 미치는 영향)

  • Shin, Sang-Hoon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.52 no.1
    • /
    • pp.61-69
    • /
    • 2015
  • In the beginning of the 1990's, numerous shaft bearing damages, especially in aft stern tube bearing, were reported. The main reasons of bearing damages were estimated that hull deflections have been increased by more flexible hulls and propeller dynamic loads have not been considered in shaft alignment. After that time, studies to take into account hull deflections in shaft alignment have been actively carried out, but for the latter leave much to be desired. In this study, the effects of the propeller forces on the propeller shaft bearing have been investigated by estimating thrust eccentricity as reasonable as possible although some assumptions to simulate turning of ship were introduced. Three dimensional nominal wake to estimate thrust eccentricity have been calculated by using CFD analysis and model test in the towing tank. This study presents the procedure to estimate the propeller eccentric forces and their influence on the stern tube bearing for a container carrier. As a result, it has been found that the lateral propeller forces in turning condition should be considered in shaft alignment to prevent shaft bearing damages.

A Study on the Motion of a Single Point Moored Ship in Irregular Waves (불규칙파중 1점계류 선바의 거동해석에 관한 연구)

  • Lee, Seung-Keon;Jo, Hyo-Jae;Kang, Dong-Hoon
    • Journal of Navigation and Port Research
    • /
    • v.27 no.1
    • /
    • pp.55-61
    • /
    • 2003
  • The maneuvering equations of motion are derived to express the motion of a ship. The wave forces in the time domain analysis are generated from the frequency transfer function calculated by 3-D source distribution method. The linear wave forces whose periods are equal to those of incident waves and the nonlinear wave forces that make long period drift forces are computed for the simulation. The consideration of irregular waves and nonlinear wave force effects on the slew motion are carried on the analyzing the motion of ship in the regular and irregular waves.

Wave Exciting Forces Acting on Ships in Following Seas (추파중(追波中)에서 항행(航行)하는 선체(船體)에 작용(作用)하는 파강제력(波强制力)에 관(關)한 연구(硏究))

  • Kyoung-Ho,Son;Jin-Ahn,Kim
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.21 no.3
    • /
    • pp.27-34
    • /
    • 1984
  • When a ship is travelling in following seas, the encounter frequency is reduced to be very low. In that case broaching phenomenon is most likely to occur, and it may be due to wave exciting forces acting on ships. It is thought that the wave exciting forces acting on ships in following seas almost consist of two components. One is hydrostatic force due to Froude-Krylov hypothesis, and the other is hydrodynamic lift force due to orbital motion of water particles below the wave surface. In the present paper, the emphasis is laid upon wave exciting sway force, yaw moment and roll moment acting on ships in following seas. The authers take the case that the component of ship speed in the direction of wave propagation is equal to the wave celerity, i.e., the encounter frequency is zero. Hydrostatic force components are calculated by line integral method on Lewis form plane, and hydrodynamic lift components are calculated by lifting surface theory. Furthermore captive model tests are carried out in regular following waves generated by means of a wave making board. Through the comparison between calculated and measured values, it is confirmed that the wave exciting forces acting on ships in following seas can be predicted in terms of present method to a certain extent.

  • PDF

Computation of Viscous Flows around a Ship with a Drift Angle and the Effects of Stern Hull Form on the Hydrodynamic Forces (사항중인 선체 주위의 점성유동 계산 및 조종유체력에 선미형상이 미치는 영향)

  • Sun-Young Kim;Yeon-Gyu Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.38 no.3
    • /
    • pp.1-13
    • /
    • 2001
  • RANS solver has been developed to solve the flows past a ship with a drift angle. The solver employs a finite volume method for the spatial discretization and Euler implicit method for the time integration. Turbulent flows are simulated by Spalart-Allmaras one-equation model. Developed solver is applied to analyze the hydrodynamic forces and flows of two tankers with a same forebody but different afterbodies. The computed flows and hydrodynamic forces are compared with the measured flows and captive model test data. The computed results show good agreements with experimental data and show clearly the effects of stern hull form on the hydrodynamic forces and the flows.

  • PDF

Experimental investigation of the whirl and generated forces of rotating cylinders in still water and in flow

  • Chen, Wei;Rheem, Chang-Kyu;Lin, Yongshui;Li, Ying
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.531-540
    • /
    • 2020
  • The whirl and generated forces of rotating cylinders with different diameters placed in still water and in flow are studied experimentally. For the rotating cylinders in still water, the Same Frequency Whirl (SFW) and Different Frequency Whirl (DFW) have been identified and illustrated. The corresponding SFW and DFW areas are divided. The Root Mean Square (RMS) values of the generated force coefficient dramatically increase in the defined ranges of Resonance I and Resonance II. For the rotating cylinders in flow, the hydrodynamics, SFW and DFW are illustrated. The hydrodynamic, SFW and DFW areas are divided. The RMS values of the generated forces in the range of Resonance II are much smaller than those in still water due to the generated lift forces. The discussion suggests that the frequency of the DFW may equal multiple times or one-multiple times that of the rotating frequency: the whirl direction of the DFW with multiple times the frequency of the rotating frequency is the same as the rotating direction. The whirl direction of the DFW with one-multiple times frequency of the rotating frequency is opposite to the rotating direction.

Numerical and experimental study on the scale effect of internal solitary wave loads on spar platforms

  • Wang, Xu;Zhou, Ji-Fu
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.569-577
    • /
    • 2020
  • Based on laboratory experiments and numerical simulations, the scale effect of Internal Solitary Wave (ISW) loads on spar platforms is investigated. First, the waveforms, loads, and torques on the spar model at a laboratory obtained by the experiments and simulations agree well with each other. Then, a prototype spar platform is simulated numerically to elucidate the scale effect. The scale effect for the horizontal forces is significant owing to the viscosity effect, whereas it is insignificant and can be neglected for the vertical forces. From the similarity point of view, the Froude number was the same for the scaled model and its prototype, while the Reynolds number increased significantly. The results show that the Morison equation with the same set of drag and inertia coefficients is not applicable to estimate the ISW loads for both the prototype and laboratory scale model. The coefficients should be modified to account for the scale effect. In conclusion, the dimensionless vertical forces on experimental models can be applied to the prototype, but the dimensionless horizontal forces of the experimental model are larger than those of the prototype, which will lead to overestimation of the horizontal force of the prototype if direct conversion is implemented.

A Numerical Study on the Characteristics of the Supercavitation and Hydrodynamic Forces Generated in a Supercavitating Underwater Vehicle with Angle of Attack (받음각을 갖는 초공동 수중 운동체에서 발생하는 초월공동과 유체력 특성에 대한 수치적 연구)

  • Jeon, Yunho;Park, Jeonghoon;Jeon, Kwansoo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.58 no.4
    • /
    • pp.214-224
    • /
    • 2021
  • Recently, as the technology of the supercavitating underwater vehicle is improved, the necessity of research for maneuvering characteristics of the supercavitating underwater vehicle has emerged. In this study, as a preliminary step to analyzing the maneuverability of a supercavitating underwater vehicle, the characteristics of cavity shapes and hydrodynamic forces generated in a supercavitating underwater vehicle with an angle of attack were evaluated numerically. First, the geometry was designed by modifying the shape of the existing supercavitating underwater vehicle. The continuity and the Navier-stokes equations are numerically solved, and turbulent eddy viscosity is solved by the k-ω SST model. The results present the characteristics of cavity shape and the hydrodynamic forces of the designed geometry with an angle of attack.