• Title/Summary/Keyword: Nature-based solution

Search Result 218, Processing Time 0.027 seconds

Development of New Meta-Heuristic For a Bivariate Polynomial (이변수 다항식 문제에 대한 새로운 메타 휴리스틱 개발)

  • Chang, Sung-Ho;Kwon, Moonsoo;Kim, Geuntae;Lee, Jonghwan
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.44 no.2
    • /
    • pp.58-65
    • /
    • 2021
  • Meta-heuristic algorithms have been developed to efficiently solve difficult problems and obtain a global optimal solution. A common feature mimics phenomenon occurring in nature and reliably improves the solution through repetition. And at the same time, the probability is used to deviate from the regional optimal solution and approach the global optimal solution. This study compares the algorithm created based on the above common points with existed SA and HS to show advantages in time and accuracy of results. Existing algorithms have problems of low accuracy, high memory, long runtime, and ignorance. In a two-variable polynomial, the existing algorithms show that the memory increases and the accuracy decrease. In order to improve the accuracy, the new algorithm increases the number of initial inputs and increases the efficiency of the search by introducing a direction using vectors. And, in order to solve the optimization problem, the results of the last experiment were learned to show the learning effect in the next experiment. The new algorithm found a solution in a short time under the experimental conditions of long iteration counts using a two-variable polynomial and showed high accuracy. And, it shows that the learning effect is effective in repeated experiments.

Global Mobility Support in Network Based Proxy Mobile IPv6 (네트워크 기반 프록시 모바일 IPv6에서 글로벌 이동 지원에 관한 연구)

  • Phung, Gia Khiem;Ro, Soong-Hwan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.7A
    • /
    • pp.688-696
    • /
    • 2010
  • The Proxy Mobile IPv6 (PMIPv6) is a network localized mobility management protocol that is independent of global mobility management protocols. In a single mobility domain (LMD), the mobile node (MN) is not involved in any IP mobility-related signaling and uses only its PMIPv6 home address for all its communication. Subsequently, when the MN moves into another LMD, the MN must change its PMIPv6 home address. In such a circumstance, host-based mobility signaling is activated. Thus, the nature of the network-based mobility of the PMIPv6 cannot be retained. Additionally, if the MN does not support global mobility, it cannot maintain communication with its correspondent node (CN). In this paper, we propose a solution for global mobility support in PMIPv6 networks, called Global-PMIPv6 that allows current communication sessions of a MN without mobility protocol stacks to be maintained, even when the MN moves into another LMD. Thus, Global-PMIPv6 retains the advantages of the PMIPv6 for global mobility support. We then evaluate and compare network performance between our proposed solution and PMIPv6.

A study on the use of continuous spectrum in problem solving in a dynamic geometry environment (동적 기하 환경의 문제 해결 과정에서 연속 스펙트럼 활용에 대한 소고)

  • Heo, Nam Gu
    • The Mathematical Education
    • /
    • v.60 no.4
    • /
    • pp.543-554
    • /
    • 2021
  • The dynamic geometric environment plays a positive role in solving students' geometric problems. Students can infer invariance in change through dragging, and help solve geometric problems through the analysis method. In this study, the continuous spectrum of the dynamic geometric environment can be used to solve problems of students. The continuous spectrum can be used in the 'Understand the problem' of Polya(1957)'s problem solving stage. Visually representation using continuous spectrum allows students to immediately understand the problem. The continuous spectrum can be used in the 'Devise a plan' stage. Students can define a function and explore changes visually in function values in a continuous range through continuous spectrum. Students can guess the solution of the optimization problem based on the results of their visual exploration, guess common properties through exploration activities on solutions optimized in dynamic geometries, and establish problem solving strategies based on this hypothesis. The continuous spectrum can be used in the 'Review/Extend' stage. Students can check whether their solution is equal to the solution in question through a continuous spectrum. Through this, students can look back on their thinking process. In addition, the continuous spectrum can help students guess and justify the generalized nature of a given problem. Continuous spectrum are likely to help students problem solving, so it is necessary to apply and analysis of educational effects using continuous spectrum in students' geometric learning.

Cloud-based Healthcare data management Framework

  • Sha M, Mohemmed;Rahamathulla, Mohamudha Parveen
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.3
    • /
    • pp.1014-1025
    • /
    • 2020
  • Cloud computing services changed the way the data are managed across the healthcare system that can improve patient care. Currently, most healthcare organizations are using cloud-based applications and related services to deliver better healthcare facilities. But architecting a cloud-based healthcare system needs deep knowledge about the working nature of these services and the requirements of the healthcare environment. The success is based on the usage of appropriate cloud services in the architecture to manage the data flow across the healthcare system.Cloud service providers offer a wide variety of services to ingest, store and process healthcare data securely. The top three public cloud providers- Amazon, Google, and Microsoft offers advanced cloud services for the solution that the healthcare industry is looking for. This article proposes a framework that can effectively utilize cloud services to handle the data flow among the various stages of the healthcare infrastructure. The useful cloud services for ingesting, storing and analyzing the healthcare data for the proposed framework, from the top three cloud providers are listed in this work. Finally, a cloud-based healthcare architecture using Amazon Cloud Services is constructed for reference.

Development of Web Based Machining Tool Data System Using XML(eXtensible Markup Language) (XML을 이용한 Web 기반 공구정보 시스템 개발)

  • Kim, Young-Jin;Yang, Yung-Mo
    • IE interfaces
    • /
    • v.16 no.1
    • /
    • pp.8-15
    • /
    • 2003
  • With rapid growth of internet technology, companies have developed an information system such as the electronic catalog for product data in the E-Business. Due to the heuristic nature of the catalog search for proper tools in the specific process, the intelligent and user friendly methods residing in the search process give a comfortable environment even for the beginners in the field. In this paper, we develop a web based catalog for machining tools especially in Milling process. It has two distinct procedures for the users of the catalog; Search and Analysis. The Search is to select a proper cutter, insert, component combination in the developed relational database based on the cutting process and material. The Analysis is to suggest a recommended optimal cutting conditions based on the machining tools and selected materials. All of these procedures are stored in a server with a program based on the ASP and Java Script where the procedure is initiated by the client using the internet which is accessed through insert. With the success on implementing the above engineering database in the internet, we can provide the foundation for developing PDM with heuristic procedure.

Optimum Design of Endosseous Implant in Dentistry by Multilevel Optimization Method (다단계 최적화 기법을 이용한 치과용 골내 임플란트의 형상 최적 설계)

  • Han, Jung-Suk;Seo, Ki-Youl;Choi, Joo-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.1
    • /
    • pp.144-151
    • /
    • 2003
  • In this paper, an optimum design problem for endosseous implant in dentistry is studied to find best implant design. An optimum design problem is formulated to reduce stresses arising at the cortical as well as cancellous bones, in which sufficient design parameters are chosen fur design definition that encompasses major implants in popular use. Optimization at once (OAO) with the large number of design variables, however, causes too costly solution or even failure to converge. A concept of multilevel optimization (MLO) is employed to this end, which is to group the design variables of similar nature, solve the sub-problem of smaller size fur each group in sequence, and this is iterated until convergence. Each sub-problem is solved based on the response surface method (RSM) due to its efficiency for small sized problem. Favorable solution is obtained by the MLO, which is compared to both solutions made by RSM and sequential quadratic programming (SQP) in the OAO problem.

Approximate Probability Density for the Controlled Responses of Randomly Excited Saturated Oscillator (불규칙 가진을 받는 포화 진동계의 응답제어에 관한 확률밀도 추정)

  • 박지훈;김홍진;민경원
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.16 no.3
    • /
    • pp.301-309
    • /
    • 2003
  • The non linear control algorithm with actuator saturation for a randomly excited oscillator has been widely explored and has shown promising results, but the probabilistic analysis of the algorithm has been rarely made due to its non-linear nature and the fact that the analytical solution of probability density function (PDF) for controlled responses does not exist. In this paper, a method for the probabilistic analysis on the non linear control algorithm with actuator saturation is proposed based on the equivalent non linear system method. Numerical examples are given to verify the approximation solution of PDF comparing to a statistically obtained PDF using a Gaussian white noise and a Kanai - Tagimi filtered Gaussian white noise.

Shape Design Sensitivity Analysis of Thermal Conduction Problems using Commercial Software ANSYS (상용 소프트웨어 ANSYS를 이용한 열전도문제의 형상설계 민감도 해석)

  • Choe, Ju-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.3 s.174
    • /
    • pp.645-652
    • /
    • 2000
  • A method for shape design sensitivity analysis is proposed utilizing commercial software ANSYS for thermal conduction problems. While the sensitivity formula is derived analytically by introduing adjoint variable concept, sensitivity calculation in practice as well as the primal and adjoint solution of thermal conduction is performed using the ANSYS very easily. Since the formula always takes boundary integral form, sensitivity evaluation in ANSYS requires a little more addition of post-processing routine which involves evaluation of boundary variable from the obtained solution. Though the BEM has been used as a better tool for this purpose, the present study shows it can also be calculated using any kind of analysis code such as ANSYS since the formula is based on analytic nature. Therefore the present study provides a new and efficient way of optimization which was not possible before using commercial software. The usefulness of the method is illustrated via a weight minimization problem of thermal diffuser.

An Enhanced Two-Phase Fuzzy Programming Model for Multi-Objective Supplier Selection Problem

  • Fatrias, Dicky;Shimizu, Yoshiaki
    • Industrial Engineering and Management Systems
    • /
    • v.11 no.1
    • /
    • pp.1-10
    • /
    • 2012
  • Supplier selection is an essential task within the purchasing function of supply chain management because it provides companies with opportunities to reduce various costs and realize stable and reliable production. However, many companies find it difficult to determine which suppliers should be targeted as each of them has varying strengths and weaknesses in performance which require careful screening by the purchaser. Moreover, information required to assess suppliers is not known precisely and typically fuzzy in nature. In this paper, therefore, fuzzy multi-objective linear programming (fuzzy MOLP) is presented under fuzzy goals: cost minimization, service level maximization and purchasing risk. To solve the problem, we introduce an enhanced two-phase approach of fuzzy linear programming for the supplier selection. In formulated problem, Analytical Hierarchy Process (AHP) is used to determine the weights of criteria, and Taguchi Loss Function is employed to quantify purchasing risk. Finally, we provide a set of alternative solution which enables decision maker (DM) to select the best compromise solution based on his/her preference. Numerical experiment is provided to demonstrate our approach.

Advances in solution of classical generalized eigenvalue problem

  • Chen, P.;Sun, S.L.;Zhao, Q.C.;Gong, Y.C.;Chen, Y.Q.;Yuan, M.W.
    • Interaction and multiscale mechanics
    • /
    • v.1 no.2
    • /
    • pp.211-230
    • /
    • 2008
  • Owing to the growing size of the eigenvalue problem and the growing number of eigenvalues desired, solution methods of iterative nature are becoming more popular than ever, which however suffer from low efficiency and lack of proper convergence criteria. In this paper, three efficient iterative eigenvalue algorithms are considered, i.e., subspace iteration method, iterative Ritz vector method and iterative Lanczos method based on the cell sparse fast solver and loop-unrolling. They are examined under the mode error criterion, i.e., the ratio of the out-of-balance nodal forces and the maximum elastic nodal point forces. Averagely speaking, the iterative Ritz vector method is the most efficient one among the three. Based on the mode error convergence criteria, the eigenvalue solvers are shown to be more stable than those based on eigenvalues only. Compared with ANSYS's subspace iteration and block Lanczos approaches, the subspace iteration presented here appears to be more efficient, while the Lanczos approach has roughly equal efficiency. The methods proposed are robust and efficient. Large size tests show that the improvement in terms of CPU time and storage is tremendous. Also reported is an aggressive shifting technique for the subspace iteration method, based on the mode error convergence criteria. A backward technique is introduced when the shift is not located in the right region. The efficiency of such a technique was demonstrated in the numerical tests.