• Title/Summary/Keyword: Natural zeolite

Search Result 232, Processing Time 0.025 seconds

The Effects of Zeolite-Type Catalysts on the Pyrolysis Reaction of PP to Produce Fuel-oil (폴리프로필렌 수지 이용 연료유 생성을 위한 열분해 반응에서 제올라이트계 촉매의 영향)

  • Bak, Young-Cheol;Choi, Joo-Hong;Oh, Se-Hui
    • Korean Chemical Engineering Research
    • /
    • v.50 no.3
    • /
    • pp.442-448
    • /
    • 2012
  • The effects of zeolite-type catalysts addition on the thermal decomposition of the PP resin have been studied in a thermal analyzer, a Pyrolyser GC-mass, and a small batch reactor. The zeolite type catalysts tested were natural zeolite, used FCC catalyst, and ZSM-5. As the results of TGA experiments, the pyrolysis starting temperature for PP varied in the range of $330{\sim}360^{\circ}C$ according to the heating rate. Addition of the zeolite type catalysts in the PP resin increased the pyrolysis rate in the order of used FCC catalyst> natural zeolite> ZSM-5 > PP resin. Adding the used FCC catalyst in the PP reduced most effectively the pyrolysis finishing temperature. In the PY-G.C. mass experiments, addition of zeolite type catalysts decreased the molecular weight of pyrolyzed product. In the batch system experiments, the mixing of used FCC catalyst enhanced best the initial yield of fuel oil, but the final yield of fuel oil was 2% higher in the case of mixing of natural zeolite. Also in the carbon number analysis, used FCC catalyst was the most useful one in this experiments for fuel oil.

A Fundamental study on the Characteristics of Zeolite Cement Mortar (제올라이트 시멘트 모르타르의 재료적 특성에 관한 기초 연구)

  • Jo, Byung-Wan;Kang, Suk-Won;Park, Seung-Kook;Choi, Ji-Sun
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.2
    • /
    • pp.203-209
    • /
    • 2011
  • The cement industry is expected to face a major set-back in the near future due to its large energy consumption and $CO_2$ production, causing global warming. In order to overcome these environmental problems, this research has bee carried out to find a cement substitute material. One possible cement substitute material is Zeolite cement. In this study, the materialistic characteristics of Zeolite cement mortar were evaluated. Natural Zeolite cement mortar was prepared using alkali activation (NaOH) instead of water ($H_2O$) to determine achievable strength and appropriate mixing ratio. Based on the mixing ratio, functional material was added to alkali active agent to harden Zeolite mortar to develop a highly functional construction material. The study result showed that pure Zeolite cement mortar achieved compressive strength of 42 MPa in 7 days depending on the mixing amount of alkaline catalyst and the hardening temperature, showing high efficiency and possibility as a new construction material.

Simultaneous Removal of Ammonium and Nitrate by Natural Zeolite and Bacteria (천연 zeolite와 미생물을 이용한 NH4+ 및 NO3-의 동시 제거)

  • Lee, Seon-hee;Lee, Ji-Hye;Kim, Duk gyum;Lee, Chang-Soo;Kang, Kyung Suk;Kim, In Ho
    • Korean Chemical Engineering Research
    • /
    • v.46 no.5
    • /
    • pp.971-976
    • /
    • 2008
  • Water pollution by ammonium ion and nitrate is a common and growing problem in the ecosystem. Process of biological removal consists of nitrification and denitrification by bacteria. Ammonium is oxidized generally to nitrate by nitrification and nitrate is reduced to dinitrogen gas in the subsequent denitrification process. Although natural zeolite is well known for its ability to preferentially remove ammonium, it is not sufficiently removing ammonium ion and nitrate by adsorption. In order to overcome this problem, a method of biological removal with zeolite is used for simultaneous removal of ammonium and nitrate. As a result, in case of shaking culture with 1% seed and passing through zeolite column, the process revealed that ammonium ion could be removed completely after 14 hours. The removal of nitrate using columns with naturally adsorbed bacteria onto zeolite reached approximately 100% after 4 hours.

$P^{32}$ Adsorption on Na-zeolite in Different Ionic Strengths (토양개량제(土壤改良劑)인 Zeolite에 의(依)한 인(燐)의 흡착(吸着))

  • Choi, Jyung
    • Applied Biological Chemistry
    • /
    • v.25 no.2
    • /
    • pp.99-104
    • /
    • 1982
  • Natural zeolite rock was pulverized and dispersed in water. Clay fraction was collected by sedimentation method. The dominant clay mineral was Clinoptiolite with some Mordenite and Smectite. $P^{32}$ adsorption on Na-zeolite was determined in different ionic strengths using $P^{32}$ isotope by sludge method. The lower the pH of suspension, the longer the contact time, and the more the amount of zeolite, the more inorganic P was adsorbed by Na-zeolite, whereas the more P adsorption per unit gram of zeolite was observed at a 100mg addition than a 200mg in same volume of P-NaCl solution (20ml), indicating that the whole positively charged surface of Na-zeolite was not occupied by inorganic P. Furthermore, the more P adsorption on Na-zeolite was observed in higher ionic strength than in the lower. The maximum P adsorption on Na-zeolite was about 1me/g, and the zero point charge (ZPC) is assumed to be below pH 3.7.

  • PDF

Influence of Gypsum, Popped Rice Hulls and Zeolite on Contents of Ca2+, Mg2+, Na+, K+ in Reclaimed Tideland Soils in Kyehwado (계화도 간척지에서 석고, 팽화왕겨 및 제올라이트 처리가 토양 중 양이온 함량에 미치는 영향)

  • Baek, Seung-Hwa;Lee, Sang-Uk;Lim, Hyo-Bin;Kim, Dae-Geun;Kim, Seong-Jo
    • Korean Journal of Environmental Agriculture
    • /
    • v.28 no.1
    • /
    • pp.25-31
    • /
    • 2009
  • The effect of application of gypsum (G), popped rice hulls (PRH), and zeolite (Z) in exchangeable cations concentrations of reclaimed tideland soil in Kyehwado was investigated for 3 years from 2004 to 2006 in a pot experiment with bermuda grass (Cynodon dactylon). Treatments with three soil conditioner and with three applications were established with three replications; G1 (1,550 kg $10a^{-1}$), G2 (3,100), and G3 (6,200) for gypsum, H1 (1,000), H2 (2,000), and H3 (3,000) for PRH, and HZ1 (200), HZ2 (400), and HZ3 (800) for co-application of zeolite with PRH at the 1,500 kg $10a^{-1}$. At 60, 90, 120 days after treatment (DAT), exchangeable cations ($K^+$, $Na^+$, $Mg^{2+}$, and $Ca^{2+}$) were analyzed Gypsum application significantly decreased $k^+$, $Na^+$, $Mg^{2+}$ in the soil probably due to exchange and subsequent leaching of these cations by $Ca^{2+}$ from the gypsum applied. Overall, $K^+$ concentration was gradually decreased by continuous application of soil conditioners and was in the order of 2004>2005>2006 regardless of the kinds and application rate of soil conditioners. Comparing $K^+$ concentrations among the soil conditioners in the same year, its concentration was in the order of gypsum$Na^+$ concentration; i.e. $Na^+$ concentration was in the order of gypsum$\ll$PRH$Mg^{2+}$ also showed a similar pattern to $Na^+$. Gypsum application significantly increased $Ca^{2+}$ concentration and in the gypsum treated soil $Ca^{2+}$ concentration increased with years.

Characterization of Natural Zeolite and Study of Adsorption Properties of Heavy Metal Ions for Development of Zeolite Mine (제올라이트 광산개발을 위한 천연 제올라이트의 특성 분석 및 중금속 이온 흡착 특성 연구)

  • Kim, Hu Sik;Kim, Young Hun;Baek, Ki Tae;Lim, Woo Taik
    • Journal of the Mineralogical Society of Korea
    • /
    • v.28 no.4
    • /
    • pp.299-308
    • /
    • 2015
  • The six natural zeolites collected in Pohang area, Kyungsangbuk-do, Korea, were characterized by XRD, XRF, DTA, TGA, and CEC analysis. The primary species of these zeolite are modenite, albite, and quarts in Kuryongpo-A (Ku-A), Kuryongpo-B (Ku-B), Kuryongpo-C (Ku-C), Donghae-A (Dh-A), Donghae-B (Dh-B), and Donghae-C (Dh-C) samples. The XRF analysis showed that the six zeolites contain Si, Al, Na, K, Mg, Ca, and Fe. Cation exchange capacity of Kuryongpo-C (Ku-C) zeolite was the highest compared to other zeolites. The capabilities of removing heavy metal ions such as $Pb^{2+}$, $Cd^{2+}$ and $Cu^{2+}$ were compared. The effect of reaction time in removing heavy metal ions was studied. The experimental results showed that the efficiency of removal was low for $Pb^{2+}$, $Cd^{2+}$ and $Cu^{2+}$ ions. These may be caused by the low content of zeolite in the six natural zeolites. This indicates that the adsorption capacity roughly tends to depend on the zeoite contents, ie., the grade of zeolite ore.

Transformation of Korean Natural Zeolite to Faujasite NaX (한국산 천연 제올라이트로부터 제올라이트 NaX로의 전환)

  • Park, Yun-Hee;Ha, Baik-Hyon
    • Applied Chemistry for Engineering
    • /
    • v.5 no.1
    • /
    • pp.24-29
    • /
    • 1994
  • The zeolite X was prepared from the Korean natural clinoptilolite, which contains some mordenite. Thermal treatment removed the clinoptilolite structure from the ore remaining mordenite. The natural clinoptilolites dealuminated with 2N-8N HCI solution and/or thermal treatment were mixed with NaCl, $NaAlO_2$ and NaOH, and reacted to zeolites X at $95^{\circ}C$ for 12~36 hrs. Maximum yield of NaX was obtained for the reactant mixture of 25 gr of natural zeolite acidtreated with 8 N HCI, together with 3.5g NaCl, 8g $NaAlO_2$ and 50 ml of 6N NaOH at $95^{\circ}C$, for 24 hrs.

  • PDF

Liquid Phase Adsorption Properties of Organo Surfur Compounds on Cation Exchanged Natural Zeolites (陽이온 交換한 天然 제올라이트에 依한 有機黃化合物의 液相吸着 特性)

  • Kim, Jong-Taik;Heo, Nam-Ho
    • Journal of the Korean Chemical Society
    • /
    • v.28 no.3
    • /
    • pp.194-202
    • /
    • 1984
  • The adsorption properties of organo sulfur compounds on cation exchanged natural zeolites from n-heptane were investigated. The equilibrium adsorbed amounts were dependent upon the exchanged cation and the nature of organo sulfur compounds such as length, volume, electronical structure. The increasing orders of equilibrium adsorbed amounts were thiophene derivatives, disulfide, sulfide mercaptane and thiophene, benzothiaphene, dibenzothiophene. And $Co^{+2}$-zeolite was the most prominent adsorbant. Rate determining step of the adsorption at initial stage was intraparticle diffusion into the transitional pores of zeolite. These adsorption rates were dependent upon the bulkiness of adsorbate. Finally, preadsorbed water didn't affect these adsorption until the cation exchanged natural zeolite contained 2.26${\times}10^{-3}$ mol/g of water. It indicated that water preferentially occupied the micro pores of the cation exchanged natural zeolites.

  • PDF

Comparions of Removal Performances of Divalent Heavy Metals by Natural and Pretreated Zeolites (천연 및 전처리 제올라이트에 의한 2가 중금속 이온 제거능의 비교.검토)

  • 감상규;김덕수;이민규
    • Journal of Environmental Science International
    • /
    • v.8 no.3
    • /
    • pp.399-409
    • /
    • 1999
  • The three domestic natural zeolites(Yong dong-ri (Y), Daesin-ri (D), Seogdong-ri (S)) harvested in Kyeongju-shi and Pohang-shi, Kyungsangbug-Do, were pretreatd with each of the NaOH, $Ca(OH)_2$ and NaOH following HCl solutions, and the removal performances of divalent haevy metals(Cu, Mn, Pb, and Sr) for natural and pretreated zeolites were investigated and compared in the single and mixed solutions. The natural zeolite-heavy metal system attained the final equilibrium plateau within 20 min, irrespective of initial heavy metal concentration. The heavy metal uptakes increased with increasing initial heavy metal concentration and pH. The heavy metal uptakes for natural zeolites decreased in the following sequences : D>Y>S among the natural zeolites; Pb>Cu>Sr>Mn among the heavy metals. The pretreated zeolites showed higher heavy metal removal performances than natural zeolites and decreased in the order of NaOH, NaOH following HCl, $Ca(OH)_2$ treatment among the pretreatment methods. The heavy metal ion exchange capacity by natural and pretreated zeolites was described either by Freundlich equation or Langmuir equation, but it followed the former better than the latter. The heavy metal uptakes for natural zeolites decreased in the mixed solution, in comparing with those in the single solution and especially, the manganese uptake decreased greatly in the mixed solution. The pretreated zeolites showed the improved removal performances of heavy metals in the mixed solution than in the single solution and the heavy metal uptakes by those in the mixed solution showed the same trends in the single solution among the chemical treatment methods and heavy metals.

  • PDF

Influence of Gypsum, Popped Rice Hulls and Zeolite on Contents of Cation in Reclaimed Tideland Soils in Mangyeong (새만금 간척지에서 석고, 팽화왕겨 및 제올라이트 처리가 토양 중 양이온 함량에 미치는 영향)

  • Baek, Seung-Hwa;Lee, Sang-Uk;Kim, Dae-Geun;Heo, Jong-Wook;Kim, Seong-Jo
    • Korean Journal of Environmental Agriculture
    • /
    • v.27 no.4
    • /
    • pp.321-327
    • /
    • 2008
  • Soil conditioner, such as $CaSO_4{\cdot}2H_2O$ (gypsum), popped rice hulls (PRH), and PRH with zeolite, were treated to the silt loam of Mangyeong in Saemangeum tideland reclaimed as 1550 (G1), 3100 (G2) and 6200 (G3) of gypsum kg/10 a, 1000(H1), 2000(H2), and 3000 (H3) of PRH kg/10 a, and 200 (HZ1), 400 (HZ2), 800 (HZ3) of zeolite kg/10 a added to 1500 PRH kg/10 a, respectively, each year until 2006 from 2004 for soil aggregation. Under these conditions with growing bermuda grass (Cynodon dactylon) it was analyzed cations in soil, such as $K^+$, $Na^+$, $Mg^{2+}$, and $Ca^{2+}$, at 60, 90, and 120 days after treatment (DAT) to research how soil conditioners influenced to change those contents in soils, respectively. The change of cations in soil was almost the same things as fine sandy loam that gypsum treated decreased remarkably contents of $K^+$, $Na^+$, $Mg^{2+}$ in soil. The change of $K^+$ content in soil by continuous using soil conditioners was gradually decreased in the order of 2004>2005>2006, regardless of the sorts and levels of soil treated conditioners, and $K^+$ content was high in the order of gypsum$Na^+$ content was high in the order of gypsum$Mg^{2+}$ content in soil was increased in the order of gypsum$Ca^{2+}$ content in soil was remarkably increased with continuous treatment of gypsum, and its level was in the order of 2004<2005<2006.