• Title/Summary/Keyword: Natural velocity

Search Result 1,025, Processing Time 0.027 seconds

Velocity Calibration of Sinusoidal Mode for Mossbauer Spectrometer and Mossbauer Study on $Fe_3O_4$ (사인파속도형 Mossbauer 분광계의 속도눈금 매기기와 Magnetite의 Mossbauer 분광법에 의한 연구)

  • 이충섭;이찬영
    • Journal of the Korean Magnetics Society
    • /
    • v.7 no.5
    • /
    • pp.232-236
    • /
    • 1997
  • We have gone into details about the velocity calibration of sinusoidal mode for Mossbauer spectrometer. Since sinusoidal Mossbauer spectrometer has a ${\gamma}$-ray source that oscillates at the end of loudspeaker with the natural frequency. Doppler velocity is accurate and stable. From the analyzing Mossbauer spectra of $Fe_3O_4$ and U $Fe_3O_4$ (unbalanced $Fe_3O_4$), we have shown the power of correct velocity for sinusoidal mode.

  • PDF

Dynamic analysis of rigid roadway pavement under moving traffic loads with variable velocity

  • Alisjahbana, S.W.;Wangsadinata, W.
    • Interaction and multiscale mechanics
    • /
    • v.5 no.2
    • /
    • pp.105-114
    • /
    • 2012
  • The study of rigid roadway pavement under dynamic traffic loads with variable velocity is investigated in this paper. Rigid roadway pavement is modeled as a rectangular damped orthotropic plate supported by elastic Pasternak foundation. The boundary supports of the plate are the steel dowels and tie bars which provide elastic vertical support and rotational restraint. The natural frequencies of the system and the mode shapes are solved using two transcendental equations, obtained from the solution of two auxiliary Levy's type problems, known as the Modified Bolotin Method. The dynamic moving traffic load is expressed as a concentrated load of harmonically varying magnitude, moving straight along the plate with a variable velocity. The dynamic response of the plate is obtained on the basis of orthogonality properties of eigenfunctions. Numerical example results show that the velocity and the angular frequency of the loads affected the maximum dynamic deflection of the rigid roadway pavement. It is also shown that a critical speed of the load exists. If the moving traffic load travels at critical speed, the rectangular plate becomes infinite in amplitude.

Natural Convection for Air-Layer between Clothing and Body Skin (의복과 인체의 공기층에 관한 자연대류 특성)

  • Ji, M.K.;Bae, K.Y.;Chung, H.S.;Jeong, H.M.;Chu, M.S.
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.648-653
    • /
    • 2001
  • This study represents the numerical analysis of natural convection of a microenvironments with a air permeability in the clothing air-layer. The clothing air layer of shoulder and arm was used for numerical analysis model. As a numerical analysis method, we adopted a finite volume method for two-dimensional laminar flow, and analyzed the flow and thermal characteristics of velocity, temperature and concentration in the air layer between body and clothing. As a temperature boundary conditions, we considered that a body skin has a high temperature with $34^{\circ}C$ the environmental temperatures are $5,\;15\;and\;25^{\circ}C$ for various permeability coefficients. The distributions of concentration, temperature and velocity were showed that two large cells were. formed at horizontal and vertical air layer, respectively. As the temperature difference between body skin and environment decrease, the heat transfer was decreased rapidly.

  • PDF

Design and Analysis of Square Beam Type Piezoelectric Vibrating Gyroscope (압전세라믹을 이용한 사각보형 진동자이로의 설계 및 성능분석)

  • 이정훈;박연규;이종원
    • Journal of KSNVE
    • /
    • v.5 no.3
    • /
    • pp.403-411
    • /
    • 1995
  • Square beam type piezoelectric vibrating gyro is developed for the measurement of angular velocity, which is compact, small in size and mass- producible. It features that three pieces of piezoelectric ceramics and bonded onto one face of equilateral square bar type gyro head. Two of them are used as sentuators which drive the gyro head and measure Coriolis force. The third piece is used for the feedback signal in order to resonate the gyro head and measure Coriolis force. The third piece is used for the feedback signal in order to resonate the gyro head with its fundamental natural frequency. Matching two fundamental natural frequencies in the gyro head with its driving frequency is found critical in the design of vibration gyro. Calibration results show that the vibrating gyro developed has the dynamic characteristics of first-order system within the frequency range of interest, which can be easily compensated by a lead compensator.

  • PDF

Model-Free Torque Control of Rotary Electro-Hydraulic Actuator using Mechanical Impedance Reduction (기계임피던스 감소기법을 이용한 회전형 전기-유압식 구동기의 모델 없는 토크제어방법)

  • Lee, Woongyong;Chung, Wan Kyun
    • The Journal of Korea Robotics Society
    • /
    • v.15 no.1
    • /
    • pp.77-89
    • /
    • 2020
  • This paper proposes a simple and intuitive model-free torque-tracking control for rotary electro-hydraulic actuators. The undesirable natural-velocity-feedback effect is discussed by introducing mechanical impedance into the electro-hydraulic actuation system. The proposed model-free torque control comprises inner- and outer-loop control to achieve two control objectives. Inner-loop control reduces the mechanical impedance passively and optimally. To improve the tracking accuracy, a certain form of proportional-integral-derivative control is applied to the outer loop. The robustness of the proposed closed-loop system against external disturbances is demonstrated by transforming the two-loop control structure into a disturbance observer form. The proposed method is validated on a single joint electro-hydraulic actuator.

Reduction of NO Emission by Two-Stage Combustion (2단 연소에 의한 NO 배출 저감에 관한 연구)

  • 유현석;최정환;오신규
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.2
    • /
    • pp.591-596
    • /
    • 1995
  • In order to investigate the reduction of NO emissions, natural gas was fueled for two-stage combustion apparatus. NO and CO emissions were described by five variables: total air ratio, primary air ratio, secondary air injection position, secondary air injection velocity, and swirl ratio. It was mainly observed that, as the primary air ratios of 0 and 0.4 NO emission decreased with increasing the secondary air injection position and secondary air injection velocity. The effect of weak swirl on NO emission was found to be insignificant.

A study on the characteristics in the vicinity of the railway track (철도 선로 주변의 자연풍 특성에 관한 연구)

  • Kwon, Hyeok-Bin;You, Won-Hee;Ha, Kang-Hee;Jeong, Myeong-Soo
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.1152-1157
    • /
    • 2007
  • Anemometers to examine the characteristics of the natural wind in the vicinity of the railway track has been installed in two spots, one at the Cheon-Asan station of the Seoul-Busan high-speed line, and the other at the Daechon station of the Changhang conventional railway line in 2006 to examine the characteristics of the natural wind around the railway track to estimate the actual wind speed acting on the train and to develop the wind gust model consisting with the Korean climate condition. The measured data shows that the instant wind velocity frequently exceeds the velocity of train speed restriction, 20m/s, and the actual wind velocities measured in the vicinity of the track are larger than the that measured by the Korean Meteorological Administration(KMA) because the anemometers are installed on the highly-elevated bridges.

  • PDF

A Simulation for the Impact Response Analysis of a Motor Cycle Helmet (시뮬레이션에 의한 오토바이 헬멧의 충격 응답 분석)

  • 최명진
    • Journal of the Korea Society for Simulation
    • /
    • v.8 no.4
    • /
    • pp.25-31
    • /
    • 1999
  • To analyze the impulsive response of a motorcycle helmet, a simulation is performed using the finite element method. Based upon the simulation result, an equivalent one degree of freedom vibrational system is adapted, and transient impulsive responses are analysed to investigate the influence of engineering parameters such as damping, natural frequency, and impact velocity on the impulsive response of the helmet. Maximum gravitational acceleration reduces as the damping factor value increases. When the damping factor value is around 0.6 or larger, the maximum acceleration does not change. With respect to the natural frequency and the impact velocity, it increases linearly. The relationship between head injury criterion(HIC) and maximum gravitational acceleration is also presented. The scheme of this study is expected to be utilized to economize the design process of high quality motorcycle helmets.

  • PDF

Flow Visualization and Measurement of Velocity and Temperature in Parallel Plates

  • Piao, R.-L;Bae, D.-S
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.2
    • /
    • pp.277-284
    • /
    • 2004
  • This paper describes the influence of through-flow on the mixed convection in a parallel plates with the upper part is cooled and the lower part heated. When forced convection is imposed on natural convection, it is found that the flow pattern of mixed convection in the parallel plates can be classified into three patterns which were affected by Reynolds number. In such a mixed convection, the flow pattern plays an important role in the heat transfer process. In this study, thermo-sensitive liquid crystal suspension method is employed, then the visualization image acquired through the above method is processed by the color image processing technique and the two-dimensional velocity vector and temperature configuration are measured simultaneously.

NATURAL CONVECTION OF WATER IN AN INCLINED CAVITY WITH HEAT GENERATION

  • Sundaravadivelu, K.;Kandaswamy, P.
    • Journal of applied mathematics & informatics
    • /
    • v.12 no.1_2
    • /
    • pp.281-289
    • /
    • 2003
  • The convection of water is investigated in the vicinity of its density maximum temperature (277 K) in an inclined square cavity in the presence of heat sources. Numerical investigations are carried out by maintaining one of the vertical walls uniformly at 273 K and varying the other wall between temperatures 275 K and 285 K at different inclinations angles. The isotherms, streamlines and velocity profiles reveal the possible existence of multicellular fluid motions, and bidirectional velocity distributions. These fluid flow and heat transfer characteristics are significantly modified by the cavity inclination in the presence of heat sources.