• Title/Summary/Keyword: Natural velocity

Search Result 1,023, Processing Time 0.031 seconds

Natural Frequency of Rotating Cantilever Pipe Conveying Fluid with Tip Mass (끝단질량을 가진 유체유동 회전 외팔 파이프의 고유진동수 해석)

  • Yoon, Han-Ik;Son, In-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.10 s.175
    • /
    • pp.150-157
    • /
    • 2005
  • The vibration system in this study is consisted of a rotating cantilever pipe conveying fluid and a tip mass. The equation of motion is derived by using the Lagrange's equation. The influences of the rotating angular velocity and the velocity of fluid flow on the natural frequencies of a cantilever pipe have been studied by the numerical method. The effects of a tip mass on the natural frequencies of a rotating cantilever pipe are also studied. The influences of a tip mass, the velocity of fluid, the angular velocity of a cantilever pipe and the coupling of these factors on the natural frequency of a cantilever pipe are analytically clarified. The natural frequencies of a cantilever pipe conveying fluid are proportional to the angular velocity of the pipe in both axial direction and lateral direction.

Small group velocity in two dimensional photonic crystal line defect (2 차원 광결정 선결함의 낮은 군속도)

  • Lee, Myotmg-Rae;Hong, Chin-Soo;Kim, Kyoung-Rae;Shin, Won-Chin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.04a
    • /
    • pp.49-51
    • /
    • 2009
  • Photonic crystal is a dielectric materials or a set of different dielectric materials with periodic structure of refractive index. Line defect obtained by leaving out a row of rod along the $\Gamma$-X direction. We showed the change of group velocity in waveguide mode and found a small group velocity. Characteristic of the small group velocity described by electric field distribution. As the phase variation, small group velocity confirmed from positive to negative.

  • PDF

The Dynamic Characteristics of Rotating Cantilever Pipe Conveying Fluid (회전하는 유체이송 외팔 파이프의 동특성 해석)

  • 윤한익;손인수
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.1
    • /
    • pp.26-32
    • /
    • 2003
  • The vibrational system of this study is consisted of a rotating cantilever pipe and the flow in the pipe. The equation of motion is derived by using Lagrange equation. The influences of the rotating angular velocity and the velocities of fluid flow in the pipe have been studied on the dynamic characteristics of a rotating cantilever pipe by numerical method. The tip-amplitude of axial vibration and maximum tip-deflection of axial direction of cantilever pipe are directly proportional to the velocity of fluid and rotating angular velocity of pipe In the steady state. respectively The bending tip-amplitude of cantilever pipe is inversely proportional to the velocity of fluid in the steady state. When the rotating angular velocity is 5 rad/s, the velocity of fluid increase with increasing the natural frequency of axial vibration at second mode and third mode, but the natural frequency axial direction of first mode is decreased. The natural frequency of lateral direction is decreased due to increase of the rotating angular velocity. It identifies that the Influence of velocity of fluid give much variation lower mode of vibration in lateral direction. And the Influence of velocity of fluid give much variation higher mode of vibration in axial direction.

A Study on Vibrational Characteristics of Piping Systems in Petrochemical Plants Considering the Fluid Velocity and Pressure (유체의 속도와 압력을 고려한 석유화학 플랜트 배관계의 진동특성에 대한 연구)

  • Kim, Kyoung-Hoon;Kim, Jeong-Hoon;Choi, Myung-Jin
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.1053-1060
    • /
    • 2006
  • This paper consider an initially deformed state caused by the pressurized fluid flowing through the pipe at a constant velocity. When the initial forte is neglected in curved pipes, the natural frequencies are reduced as flow velocity increases. However, when the initial tension took into account, the natural frequencies are not changed with the change of the flow velocity. As the internal pipe pressure is increased the natural frequencies are also slightly increased. In free vibrational simulation of piping systems in petrochemical plants, it is necessary to calculate the initial state force due to the velocity and the pressure of the fluid flow from the equilibrium first, then the force should be included in the equation of motion of the systems to get more accurate natural frequencies. In this study, calculate the mass matrix and stiffness matrix of piping system by MATLAB

  • PDF

Properties of zero group velocity in 2-Dimensional photonic crystal (2 차원 광결정의 군속도의 특징)

  • Kim, Kyoung-Rae;Hong, Chin-Soo;Lee, Myoung-Rae;Shin, Won-Jin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.04a
    • /
    • pp.52-54
    • /
    • 2009
  • A plane wave expansion method(PWEM) was applied for photonic band structure calculation. We examined zero group velocity modes in photonic crystals. The zero group velocity was obtained in second band along G-K direction. We expanded Brillouin zone, and investigated on zero group velocity.

  • PDF

A Simulation for the Free Vibration of Pipe Systems Considering Initial Tension (초기 인장력을 고려한 파이프계의 자유진동 시뮬레이션)

  • 최명진
    • Journal of the Korea Society for Simulation
    • /
    • v.7 no.2
    • /
    • pp.105-114
    • /
    • 1998
  • Using finite elements, a simulation is prformed for the pipe systems to investigate free vibrational characteristics, that is natural frequencies, considering the intial tension due to the velocity and the pressure of the inside fluid flow. To confirm the program developed in this study, the results are compared with the results of commercial software ANSYS. When the initial tension is neglected in curved pipes, the natural frequencies are reduced as flow velocity increases, and the rapid decreases of the natural frequencies took place. However, when the initial tension is taken into account, the natural frequencies are not changed with the change of the flow velocity. In free vibrational simulation of pipe systems, it is necessary to calculate the initial state force due to the velocity and the pressure of the fluid flow from the equilibrium first, then the force should be included in the equation of motion of the systems to get more accurate natural frequencies.

  • PDF

Measuring calorific values of natural gases using sound velocity and thermal conductivity (천연가스 음속과 열전도도 상관식을 이용한 발열량 측정기술)

  • Lee, Ju-Haeng;Choi, Byungchul;Choi, Inchul
    • 한국연소학회:학술대회논문집
    • /
    • 2015.12a
    • /
    • pp.57-59
    • /
    • 2015
  • A method to measure heating value of natural gas using sound velocity and thermal conductivity is proposed to solve the low heating value issues of imported natural gas in South Korea. Natural gas generally consists of methane, butane, ethane, and inert gases. Heating value changes as the gas material properties, such as density, wobbe index, etc., varies. It is highly important to measure heating values of natural gases accurately because measuring the heating value depends on the given natural gases' components. Therefore, sound velocity and thermal conductivity is measured to estimate indirectly heating value of Natural gas with their changed components.

  • PDF

Discharge Estimation Using Non-dimensional Velocity Distribution and Index-Velocity Method in Natural Rivers (자연하천에서 무차원 유속분포-지표유속법을 이용한 유량산정)

  • Kim, Chang-Wan;Lee, Min-Ho;Jung, Sung-Won;Yoo, Dong-Hoon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.855-859
    • /
    • 2007
  • It is essential to obtain accurate and highly reliable streamflow data for water resources planning, evaluation and management as well as design of hydraulic structures. A new discharge estimation method, which is named 'non-dimensional velocity distribution and index-velocity method,' was proposed in this research. This method showed very close channel discharges which were calculated with the exiting velocity-area method. When velocity-area method is used to estimate channel discharge, it is required to observe point velocities at every desired point and vertical using a current meter like Price-AA. However 'non-dimensional velocity distribution and index-velocity method' is used, it become optional to observe point velocities at every desired point and vertical. But this method can not be applied for the cases of very complex and strongly asymmetric channel cross-sections because non-dimensional velocity distribution by entropy concept may be quite biased from that of natural rivers.

  • PDF

Experimental Study on Comparison of Flame Propagation Velocity for the Performance Improvement of Natural Gas Engine

  • Chung Jin Do;Jeong Dong Soo
    • Journal of Environmental Science International
    • /
    • v.14 no.1
    • /
    • pp.15-22
    • /
    • 2005
  • Natural gas possesses several characteristics that make it desirable as an engine fuel; 1)lower production cost, 2)abundant commodity and 3)cleaner energy source than gasoline. Due to the physics characteristics of natural gas, the volumetric efficiency and flame speed of a natural gas engine are lower than those of a gasoline engine, which results in a power loss of $10-20{\%}$ when compared to a normal gasoline engine. This paper describes the results of a research to improve the performance of a natural gas engine through the modification and controls of compression ratio, air/fuel ratio, spark advance and supercharging and method of measuring flame propagation velocity. It emphasizes how to improve the power characteristics of a natural gas engine. Combustion characteristics are also studied using an ion probe. The ion probe is applied to measure flame speed of gasoline and methane fuels to confirm the performance improvement of natural gas engine combustion characteristics.

An Experimental Study on Velocity Analysis by Automatic Velocity Analysis Algorithms in Layers Having Lateral Velocity Anomaly (수평적 속도변화대에서 자동속도분석 알고리즘을 이용한 속도분석 실험연구)

  • Yoon, Kwang Jin;Yang, Seung Jin
    • Economic and Environmental Geology
    • /
    • v.30 no.5
    • /
    • pp.469-476
    • /
    • 1997
  • In the conventional velocity analysis, the peaks of a semblance panel are picked and the stacking velocities of the peaks are assumed as RMS velocities from which interval velocities are determined. This velocity analysis technique is correct only for horizontal homogeneous layes and incurs error in a layer whose velocity varies laterally. Tediousness of peak picking and error in velocity analysis can be reduced by automatic velocity analysis techniques. An automatic velocity analysis algorithm has been presented in order to improve these problems by considering the stacking velocity from the view point of interval velocity model and by relating the stacking velocity and the interval velocity with the traveltimes. In this paper, we apply the automatic velocity analysis method to simple models having lateral velocity anomaly to verify the effectivenesses and limits of this method. From the results of numerical experiments, we can determine the interval velocites without pickings of the stacking velocities in the one-dimensional velocity analysis and the general patterns of the laterally varying interval velocities appear in the two-dimensional case. However, the interval velocity and the depth of velocity anomaly determined by two-dimensional automatic velocity analysis are somewaht discrepant in those of the theoretical model.

  • PDF