• 제목/요약/키워드: Natural thermal energy

검색결과 425건 처리시간 0.031초

지하대수층을 이용한 축열시스템의 설계(II) : 열해석 (Design of an Aquifer Thermal Energy Storage System(II) : Thermal Analysis)

  • 이관수;이태희;송영길
    • 설비공학논문집
    • /
    • 제6권3호
    • /
    • pp.315-324
    • /
    • 1994
  • The energy recovery efficiency(ERE) of an aquifer thermal energy storage system was calculated using curvilinear coordinate. The results of the calculation were compared with the experimental results, and agreed within 11% of the discrepancy. The variation of ERE was investigated as a function of the underground water natural velocity, the amount of the stored energy, and period of the energy recovery. The slower the natural velocity and shorter the recovery period, the higher ERE was yielded. Also it was found that increase in the amount of energy storage yields higher ERE, and carries out less influential ERE to the natural velocity. Reiterative usage of the aquifer as a thermal storage tends to gradually increase ERE. The result of this study implements that the aquifer thermal energy storage system is suitable for large cooling/heating loads, such as district cooling/heating.

  • PDF

Numerical investigation of two-component single-phase natural convection and thermal stratification phenomena in a rod bundle with axial heat flux profile

  • Grazevicius, Audrius;Seporaitis, Marijus;Valincius, Mindaugas;Kaliatka, Algirdas
    • Nuclear Engineering and Technology
    • /
    • 제54권8호
    • /
    • pp.3166-3175
    • /
    • 2022
  • The most numerical investigations of the thermal-hydraulic phenomena following the loss of the residual heat removal capability during the mid-loop operation of the pressurized water reactor were performed according to simplifications and are not sufficiently accurate. To perform more accurate and more reliable predictions of thermal-hydraulic accidents in a nuclear power plant using computational fluid dynamics codes, a more detailed methodology is needed. Modelling results identified that thermal stratification and natural convection are observed. Temperatures of lower monitoring points remain low, while temperatures of upper monitoring points increase over time. The water in the heated region, in the upper unheated region and the pipe region was well mixed due to natural convection, meanwhile, there is no natural convection in the lower unheated region. Water temperature in the pipe region increased after a certain time delay due to circulation of flow induced by natural convection in the heated and upper unheated regions. The modelling results correspond to the experimental data. The developed computational fluid dynamics methodology could be applied for modelling of two-component single/two-phase natural convection and thermal stratification phenomena during the mid-loop operation of the pressurized water reactor or other nuclear and non-nuclear installations at similar conditions.

CFD와 실측을 이용한 환경제어요소 도입 및 주택 자연환기 성향 검토를 통한 에너지 절감가능성 고찰 (Study on Energy Saving Possibilities through Analysis of Environment Control Elements & Natural Ventilation Performance using the CFD & Measurement)

  • 오병철;이선영
    • 한국태양에너지학회 논문집
    • /
    • 제34권6호
    • /
    • pp.27-37
    • /
    • 2014
  • Heat island is caused by changes of land coverage structure of cities and use of energy in buildings. As a result energy use in buildings get to increase further followed by rising of GHG emission and deteriorating climate change. Eco-friendly housing complex is a kind of plan that applies environmental control elements like water and green spaces to housing complex. With these methods, it can be expected to create thermal environment of indoor and outdoor. In this paper quantitative examination is studied on using CFD to find out the effects of river, water permeable, parks and planting on thermal environment. And by comparing field measurements with CFD results which are aimed to development phase housing complex, feasibility and usability of the CFD analysis results are confirmed. And also, analysis on the ventilation performance followed by natural ventilation system is analyzed by selecting one building in housing complex. Based on the results, the possibilities of energy reduction through making thermal environment and applying natural ventilation are studied. With these outcomes, creating thermal conditions and using natural ventilation would be contributed to GHG reduction.

Numerical investigation of two-phase natural convection and temperature stratification phenomena in a rectangular enclosure with conjugate heat transfer

  • Grazevicius, Audrius;Kaliatka, Algirdas;Uspuras, Eugenijus
    • Nuclear Engineering and Technology
    • /
    • 제52권1호
    • /
    • pp.27-36
    • /
    • 2020
  • Natural convection and thermal stratification phenomena are found in large water pools that are being used as heat sinks for decay heat removal from the reactor core using passive heat removal systems. In this study, the two-phase (water and air) natural convection and thermal stratification phenomena with conjugate heat transfer in the rectangular enclosure were investigated numerically using ANSYS Fluent 17.2 code. The transient numerical simulations of these phenomena in the full-scale computational domain of the experimental facility were performed. Generation of water vapour bubbles around the heater rod and evaporation phenomena were included in this numerical investigation. The results of numerical simulations are in good agreement with experimental measurements. This shows that the natural convection is formed in region above the heater rod and the water is thermally stratified in the region below the heater rod. The heat from higher region and from the heater rod is transferred to the lower region via conduction. The thermal stratification disappears and the water becomes well mixed, only after the water temperature reaches the saturation temperature and boiling starts. The developed modelling approach and obtained results provide guidelines for numerical investigations of thermal-hydraulic processes in the water pools for passive residual heat removal systems or spent nuclear fuel pools considering the concreate walls of the pool and main room above the pool.

Comparative study of CFD and 3D thermal-hydraulic system codes in predicting natural convection and thermal stratification phenomena in an experimental facility

  • Audrius Grazevicius;Anis Bousbia-Salah
    • Nuclear Engineering and Technology
    • /
    • 제55권4호
    • /
    • pp.1555-1562
    • /
    • 2023
  • Natural circulation phenomena have been nowadays largely revisited aiming to investigate the performances of passive safety systems in carrying-out heat removal under accidental conditions. For this purpose, assessment studies using CFD (Computational Fluid Dynamics) and also 3D thermal-hydraulic system codes are considered at different levels of the design and safety demonstration issues. However, these tools have not being extensively validated for specific natural circulation flow regimes involving flow mixing, temperature stratification, flow recirculation and instabilities. In the present study, an experimental test case based on a small-scale pool test rig experiment performed by Korea Atomic Energy Research Institute, is considered for code-to-code and code-to-experimental data comparison. The test simulation is carried out using the FLUENT and the 3D thermal-hydraulic system CATHARE-2 codes. The objective is to evaluate and compare their prediction capabilities with respect to the test conditions of the experiment. It was observed that, notwithstanding their numerical and modelling differences, similar agreement results are obtained. Nevertheless, additional investigations efforts are still needed for a better representation of the considered phenomena.

Post Test Analysis to Natural Circulation Experiment on the BETHSY Facility Using the MARS 1.4 Code

  • Chung, Young-Jong;Kim, Hee-Cheol;Chang, Moon-Hee
    • Nuclear Engineering and Technology
    • /
    • 제33권6호
    • /
    • pp.638-651
    • /
    • 2001
  • The present study is to assess the applicability of the best-estimate thermal-hydraulic code, MARS 1.4, for the analysis of thermal-hydraulic behavior in PWRs during natural circulation conditions. The code simulates a natural circulation test, BETHSY test 4. la, which was conducted on the integral test facility of BETHSY. The test represented the cooling states of the primary cooling system under single-phase natural circulation, two-phase natural circulation and the reflux condensation mode with conditions corresponding to the residual power, 2% of the rated core power value and 6.8 MPa at the secondary system. Based on MARS 1.4 calculations, the major thermal-hydraulic behaviors during natural circulation are evaluated and the differences between the experimental data and calculated results are identified. The calculated results show generally good behavior with regard to the experimental results; the region of single-phase natural circulation is 100-92% of the initial mass inventory, two-phase natural circulation is 84-63 %, and the reflux condensation mode occurred below 58 %. U-tubes empty and the core uncovery are obtained at 39 % and 34 % of the initial mass inventory, respectively.

  • PDF

수직벽면형 무동력 태양열 시스템 작동성능에 관한 실험적 연구 (An experimental study on the operating performance of facade installed natural circulation type solar thermal system)

  • 백남춘;이왕제;이진국;이순명
    • 한국태양에너지학회 논문집
    • /
    • 제35권4호
    • /
    • pp.1-7
    • /
    • 2015
  • The operation of the natural circulation type solar heating systems with facade integrated collector was analyzed by experiment. Two different types of flat plate solar collectors were used for these experiments. One was for the normal flat plate solar collector with the size of 1m*2m and the other was for the large size solar collector with $4m^2$(1m*4m). The experiments were carried out to investigate the effect of the series or parallel connection method on the performance of the collectors. As a result, the solar thermal system which is installed on the wall or facade would be applicable for the natural circulation type if the system design reflects various parameters, including collector connecting method(series or parallel), to provide enough vertical height between collector and storage tank, and to reduce pressure loss due to collector and piping network, etc. The natural circulation type of solar thermal system as proposed in this study can increase the system reliability by removing or minimizing the use of the components such as pump, controller, sensors which may cause serious troubles of the system for a long-time operation

흙을 이용한 트롬월의 열성능 시뮬레이션 평가 (Thermal Performance Evaluation of Earth-Applied Trombe Wall by Simulation)

  • 노지희;김준태
    • 한국태양에너지학회 논문집
    • /
    • 제24권2호
    • /
    • pp.63-71
    • /
    • 2004
  • Energy and environmental concerns accelerate the interest in passive solar heating in buildings, which utilizes solar energy through natural heat transfer. Moreover concerns about environmentally friendly materials were also increased. This study aims to evaluate the thermal performance of a Trombe wall built with earth. The thermal performance of the Trombe walls was analysed with results from computer simulations with TRNSYS 15. The thermal performance of the three types of Trombe wall was compared.: concrete. rammed earth. adobe. It was found that Trombe wall with the thermal storage wall of earth performed better than that of concrete. Rammed earth and adobe Trombe walls gained 4.7% and 12.8% more solar energy. respectively. than the concrete Trombe wall. In earth-applied Trombe walls. the energy gain by natural convection released from the airspace was about 75% of the total solar gains. that took 15% more than concrete Trombe wall. Rammed earth and adobe Trombe walls seem to be more suitable for buildings that use mostly in daytime. such as school, office and so on.