• Title/Summary/Keyword: Natural slope

Search Result 760, Processing Time 0.028 seconds

A Study on Embankment Slope Management System (성토사면유지관리시스템 개발에 관한 연구)

  • Kim, Seung-Hyun;Kim, Hong-Gyun;Lee, Jung-Yup;Koo, Ho-Bon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.749-758
    • /
    • 2010
  • Embankment Slope (or Fill Slope) is defined as artificial slope formed by the filling of soil or rocks on the original ground. Recently a lot of embankment failures and collapse has occurred due to the increase of torrential rainfall and typhoons. Embankment collapse has lead to a great loss of lives and property therefore there is a need to establish a systematic embankment slope management system that will handle the maintenance and repair of risky embankment slopes. The objective of this study is to establish an "Embankment Slope Management Method" for embankment slopes located along national highways all over Korea. The method for field investigation of embankment slopes was recommended and the system for investment priority determination was also developed. The factors that lead to the collapse of embankment slopes caused by natural calamities were also determined through the initial survey of embankment slopes located along river fronts and mountainous areas.

  • PDF

Effects of Plant Mixtures and Tackifibers on the Slope Vegetation (식물배합과 녹화용 접착제에 따른 비탈면녹화 특성)

  • Kim, Jae-Hwan;Yoon, Jung-Seo;Shim, Sang-Ryul
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.9 no.6
    • /
    • pp.123-132
    • /
    • 2006
  • This research was studied to inverstigate the effect of plant mixtures and tackifibers on the vegetation of slope sites. 5 type plant mixtures(tree type, forest type, native herbaceous plant type, foreign herbaceous plant type, and cool-season turfgrass type) and 3 different tackifibers (Guar tackifibers, Polyarchrylamide tackifibers and Cellulose methyl starch) were treated with 3 replications on the experimented slope. The germination and coverage rate were high on native and foreign herbaceous plants and low on cool-season turfgrass, forest and tree types. We could notice that herbaceous plant types were effective on the vegetation of slope in the short term. Because tree or forest type vegetations similar to natural plant habitat, however, were preferable on slope vegetation in the long term, tree species of high germination rate should be selected in this experiment for tree or forest type slope vegetations. Tackifiber treatments increased the germination rate during the early treatment stage. However, the effect of tackifiber treatment on germination rate was decreased on the elapse of time. Guar tackifiber treatment was most effective on the vegetation of slope. As far as soil erosion control was concerned, all tackifiber treatments were effective compared to control.

A Study on Rainfall Induced Slope Failures: Implications for Various Steep Slope Inclinations

  • Do, Xuan Khanh;Jung, Kwansue;Lee, Giha;Regmi, Ram Krishna
    • Journal of the Korean GEO-environmental Society
    • /
    • v.17 no.5
    • /
    • pp.5-16
    • /
    • 2016
  • A rainfall induced slope failure is a common natural hazard in mountainous areas worldwide. Sudden and rapid failures which have a high possibility of occurrence in a steep slope are always the most dangerous due to their suddenness and high velocities. Based on a series of experiments this study aimed to determine a critical angle which could be considered as an approximate threshold for a sudden failure. The experiments were performed using 0.42 mm mean grain size sand in a 200 cm long, 60 cm wide and 50 cm deep rectangular flume. A numerical model was created by integrating a 2D seepage flow model and a 2D slope stability analysis model to predict the failure surface and the time of occurrence. The results showed that, the failure mode for the entire material will be sudden for slopes greater than $67^{\circ}$; in contrast the failure mode becomes retrogressive. There is no clear link between the degree of saturation and the mode of failure. The simulation results in considering matric suction showed good matching with the results obtained from experiment. A subsequent discarding of the matric suction effect in calculating safety factors will result in a deeper predicted failure surface and an incorrect predicted time of occurrence.

Characteristics of Semi-diurnal and Diurnal Currents at a KOGA Station over the East China Sea Shelf

  • Noh, Su-Yun;Seung, Young Ho;Lim, Eun-Pyo;You, Hak-Yeol
    • Ocean and Polar Research
    • /
    • v.36 no.1
    • /
    • pp.59-69
    • /
    • 2014
  • The long-term mooring performed at a KOGA station, located at about $30^{\circ}20^{\prime}N$, $126^{\circ}12^{\prime}E$ in the East China Sea shelf, shows some different behaviors between "semi-diurnal" and "diurnal currents" defined as the currents with periods around, respectively, a half day and a day. They appear to be predominantly tidal having significant coherences with sea level changes around the semi-diurnal and diurnal frequencies. The "semi-diurnal current" is strongly barotropic all year round. However, contrastingly, it is largely baroclinic in summer in the area about 70 km nearer to the continental slope, referred to as the "slope-area", as was found in previous current observations. The "diurnal current" of tidal origin is strongly barotropic in winter. In spring and summer, however, it becomes more baroclinic although it still remains largely barotropic, also showing more of its barotropic nature than in the "slope-area". The inertial oscillation contributing to the "diurnal current" appears to be more prominent when the current is baroclinic, indicating the important role played by stratification in generation of inertial oscillations. Downward energy propagation of inertial oscillation is not observed, suggesting that it is not created at the surface by wind. Considering that the study area is both near a critical latitude and proximity to the continental slope, it is suggested that parametric subharmonic instability (PSI) plays a significant role in creating the baroclinic inertial oscillation.

Spatio-Temporal Variation of Soil Respiration and Its Association with Environmental Factors in Bluepine Forest of Western Bhutan

  • Cheten Thinley;Baghat Suberi;Rekha Chhetri
    • Journal of Forest and Environmental Science
    • /
    • v.39 no.1
    • /
    • pp.13-19
    • /
    • 2023
  • We investigated Soil respiration in Bluepine forest of western Bhutan, in relation to soil temperature, moisture content and soil pH and it was aimed at establishing variability in space and time. The Bluepine forest thrives in the typical shallow dry valleys in the inter-montane Bhutan Himalaya, which is formed by ascending wind from the valley bottom, which carries moisture from the river away to the mountain ridges. Stratified random sampling was applied and the study site was classified into top, mid, low slope and further randomized sample of n=20 from 30 m×30 m from each altitude. The overall soil respiration mean for the forest was found 2248.17 CO2 g yr-1 and it is ~613.58 C g yr-1. The RS from three sites showed a marginal variation amongst sites, lower slope (2,309 m) was 4.64 μ mol m-2 s-1, mid slope (2,631 m) was 6.78 μ mol m-2 s-1 and top slope (3,027 m) was 6.33 μ mol m-2 s-1 and mean of 5.92 μ mol m-2 s-1, SE=0.25 for the forest. Temporal distribution and variations were observed more pronounced than in the space variation. Soil respiration was found highest during March and lowest in September. Soil temperature had almost inverse trend against soil respiration and dropped a low in February and peak in July. The moisture in the soil changed across months with precipitation and pH remained almost consistent across the period. The soil respiration and soil temperature had significant relationship R2=-0.61, p=0.027 and other variables were found insignificant. Similar relationship are reported for dry season in a tropical forest soil respiration. Soil temperature was found to have most pronounced effect on the soil respiration of the forest under study.

Review of Applicability of Analysis Method based on Case Study on Rainfall-Induced Rock Slope Failure (강우에 의한 암반사면 파괴 해석 사례 연구를 통한 해석방법 적용성 검토)

  • Jung, Jahe;Kim, Wooseok
    • The Journal of Engineering Geology
    • /
    • v.27 no.3
    • /
    • pp.267-274
    • /
    • 2017
  • Behavior of rock mass depend on the mechanical properties of intact rock and geometrical property of discontinuity distributed in rock mass. In case of rock slope, particularly, location of slope failure surface and behavior after failure are changed due to discontinuities. In this study, two 3D slope stability analysis methods were developed for two different failure types which are circular failure and planar failure, considering that failure type of rock slope is dependent on scale of discontinuity which was then applied to real rock slope to review the applicability. In case of circular failure, stable condition was maintained in natural dry condition, which however became unstable when the moisture content of the surface was increased by rainfall. In case of planar failure, rock slope become more unstable comparing to dry condition which is attributable to decrease in friction angle of discontinuity surface due to rainfall. Viewing analysis result above, analysis method proved to have well incorporated the phenomenon occurred on real slope from the analysis result, demonstrating its applicability to reviewing the slope stability as well as to maintaining the slope.

Recommendation of I-D Criterion for Steep-Slope Failure Estimation Considering Rainfall Infiltration Mechanism (강우침투 메커니즘을 이용한 급경사지 붕괴예측 I-D 기준식 제안)

  • Song, Young-Karb;Kim, Young-Uk;Kim, Dong-Wook
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.5
    • /
    • pp.65-74
    • /
    • 2013
  • The natural disaster occurrences and the loss of lives caused by the steep-slope failures in Korea were investigated in this study. The investigation includes the frequency rate of the steep-slope failures with respect to the characteristics of precipitation, underlying bedrock, and weathered soils. Analysis on the problems in the existing estimation methods of steep-slope failure was also undertaken, and a new model using unsaturated infinite slope stability was developed for the better slope failure estimation. The slope analyses by the newly developed model were performed considering unsaturated infinite slope, the gradient of slope, and hydro/mechanical properties of soils. Steep-slope failure estimation criterion is proposed based on the analysis results. In addition, the precipitation amount corresponding to warning stages against steep-slope failure is provided as an equation of Intensity-Duration criterion.

Research on the Production of Risk Maps on Cut Slope Using Weather Information and Adaboost Model (기상정보와 Adaboost 모델을 이용한 깎기비탈면 위험도 지도 개발 연구)

  • Woo, Yonghoon;Kim, Seung-Hyun;Kim, Jin uk;Park, GwangHae
    • The Journal of Engineering Geology
    • /
    • v.30 no.4
    • /
    • pp.663-671
    • /
    • 2020
  • Recently, there have been many natural disasters in Korea, not only in forest areas but also in urban areas, and the national requirements for them are increasing. In particular, there is no pre-disaster information system that can systematically manage the collapse of the slope of the national highway. In this study, big data analysis was conducted on the factors causing slope collapse based on the detailed investigation report on the slope collapse of national roads in Gangwon-do and Gyeongsang-do areas managed by the Cut Slope Management System (CSMS) and the basic survey of slope failures. Based on the analysis results, a slope collapse risk prediction model was established through Adaboost, a classification-based machine learning model, reflecting the collapse slope location and weather information. It also developed a visualization map for the risk of slope collapse, which is a visualization program, to show that it can be used for preemptive disaster prevention measures by identifying the risk of slope due to changes in weather conditions.

Stability Analysis for a Slope Reinforced with Pressure Grouted Soil Nails (가압식 그라우팅 쏘일네일 보강사면의 거동분석)

  • Kim, Yong-Min;Yun, Yeo-Hyeok;Lee, Sung-June;Jeong, Sang-Seom
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.12
    • /
    • pp.39-52
    • /
    • 2011
  • This paper describes a new numerical analysis technique in stability analysis for a slope reinforced with pressure grouted soil nails. The installing effect of pressure grouted soil nails can be simulated in this method. Shear strength reduction method associated with finite element method is used for slope stability analysis. Factors of safety for a slope reinforced with pressure grouted soil nails are compared with those for a natural slope and a slope reinforced with gravity grouted soil nails in order to investigate their reinforcing effects. More than 50% increase in the factor of safety is obtained when the slope is reinforced with pressure grouted soil nails compared to the one with gravity grouted soil nails. The reinforcing effects of pressure grouted soil nails become obvious with increase in their length. The reinforcing mechanism of the pressure grouted soil nails for the slope stability can be explained by the slope failure surface expanding gradually toward the backfill. The increased stability of the slope reinforced with pressure grouted soil nails results mainly from their improved pull-out resistance.

Effectiveness Estimation of Rock Slope Stability Evaluation Items for Geometrical Configuration and Topographical Characteristic (기하학적 형상 및 지형학적 특성을 중심으로 한 암반사면 안정성 평가항목의 유효성 평가)

  • Lee, Yonghee;Kim, Jongryeol;Lee, Jinsoo;Kang, Kwonsoo;Kim, Nagyoung
    • Journal of the Korean GEO-environmental Society
    • /
    • v.9 no.5
    • /
    • pp.61-69
    • /
    • 2008
  • In general, it has been usually used the method that assess rock slope stability using stereographic projection method, limit equilibrium analysis, numerical analysis and slope stability evaluation table. Several methods for assessing the stability of rock slopes has been proposed on the basis of site investigation data. These method adopted different evaluation items and weighting factors by researchers, organization and nation. But the researches for each evaluation items were insufficient. So the effectiveness of rock slope stability evaluation items for geometrical configuration (slope height, slope direction and angle, dip and dip direction of major discontinuity, absolute value for the direction difference for slope and major discontinuities) and topographical characteristic (possibility of topographical water concentration, upper natural slope angle, slope configuration) using 315 failure and stable highway rock slope analysis data, AV (abnormal value) analysis and NMAV (normalized maximum abnormal value) analysis were evaluated.

  • PDF