• Title/Summary/Keyword: Natural radiation dose rate

Search Result 39, Processing Time 0.034 seconds

A Study on Retrospective of External Radiation Exposure Dose by Optically Stimulated Luminescence of Smart Chip Card (스마트칩 카드을 이용한 광 자극 발광 특성 연구)

  • Park, Sang-Won;Yoo, Se-Jong
    • Journal of radiological science and technology
    • /
    • v.42 no.5
    • /
    • pp.379-385
    • /
    • 2019
  • Radiation is used for various purposes such as cancer therapy, research of industrial and drugs. However, in case of radiation accidents such as terrorism, collapsing nuclear plant by natural disasters like Fukushima in 2011, very high radiation does expose to human and could lead to death. For this reason, many people are concerning about radiation exposures. Therefore, assessment and research of retrospective radiation dose to human by various path is an necessary task to be continuously developed. Radiation exposure for workers in radiation fields can be generally measured using a personal exposure dosimeter such as TLD, OSLD. However, general people can't be measured radiation doses when they are exposed to radiation. And even if radiation fields workers, when they do not in possession personal dosimeter, they also can't be measured exposure dose immediately. In this study, we conduct retrospective research on reconstruction of dose after exposure by using smart chip card of personal items through Optically Stimulated Luminescence (OSL). The OSL signal of smart chip card shows linear response from 0.06 Gy to 15 Gy and results of fading rate 45 %, 48% for 24 and 48 hours due to the natural emission of radiation in sample, respectively. The minimum detectable limit (MDD) was 0.38 mGy. This values are expected to use as correction values for reconstruction of exposure dose.

ESR dosimetry and Dating toward $21^{st}$ Century

  • Ikeya, Motoji
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.6 no.2
    • /
    • pp.84-88
    • /
    • 2002
  • Dating and dosimetry using electron spin resonance (ESR) in 20th Century developed at both Yamaguchi University and Osaka University have been reviewed with emphasis on new prospects and strategies in 21th century. Natural radiation have been generating radicals that accumulated in archaeological and geological materials. ESR detects these radicals and the ESR signal intensity is proportional to the radiation dose and therefore the age. The assessment of the total dose of natural radiation and the annual dose rate give their ESR ages. The ESR dating of stalactites and stalagmites ant Akiyoshi cave in Yamaguchi prefecture in 1975 was extended to anthropological dating using bones and tooth enamel excavated in Greek Petralona cave. Fossils of shells and corals gave the ages of marine terraces and sea-level changes. Quartz grains gave the ages of geothermal alteration and fault movements. Future ESR dating of ices at outer planets anf their satellite are also investigated as basic studies for ices od $H_2O,\;CO_2,\;SO_2$ as well as terrestrial hydrates in laboratory. Atomic bomb radiation dosimetry at Hiroshima and Nagasaki using ESR lead to the dosimetry of personnel, Chemobyl and JCO criticality accidents. Monitoring of radiation dose with sensitive materials with tissue equivalence are being developed. finally a new scanning ESR imaging apparatus (a near field microwave microscope) developed in our laboratory gave ESR images of Radicals from fossils to Si-CVD and diamond films as summarized in my book in 2002.

  • PDF

Public Exposure to Natural Radiation and the Associated Increased Risk of Lung Cancer in the Betare-Oya Gold Mining Areas, Eastern Cameroon

  • Joseph Emmanuel Ndjana Nkoulou II;Louis Ngoa Engola;Guy Blanchard Dallou;Saidou;Daniel Bongue;Masahiro Hosoda;Moise Godefroy Kwato Njock;Shinji Tokonami
    • Journal of Radiation Protection and Research
    • /
    • v.48 no.2
    • /
    • pp.59-67
    • /
    • 2023
  • Background: This study aims to reevaluate natural radiation exposure, following up on our previous study conducted in 2019, and to assess the associated risk of lung cancer to the public residing in the gold mining areas of Betare-Oya, east Cameroon, and its vicinity. Materials and Methods: Gamma-ray spectra collected using a 7.62 cm×7.62 cm in NaI(Tl) scintillation spectrometer during a car-borne survey, in situ measurements and laboratory measurements performed in previous studies were used to determine the outdoor absorbed dose rate in air to evaluate the annual external dose inhaled by the public. For determining internal exposure, radon gas concentrations were measured and used to estimate the inhalation dose while considering the inhalation of radon and its decay products. Results and Discussion: The mean value of the laboratory-measured outdoor gamma dose rate was 47 nGy/hr, which agrees with our previous results (44 nGy/hr) recorded through direct measurements (in situ and car-borne survey). The resulting annual external dose (0.29±0.09 mSv/yr) obtained is similar to that of the previous study (0.33±0.03 mSv/yr). The total inhalation dose resulting from radon isotopes and their decay products ranged between 1.96 and 9.63 mSv/yr with an arithmetic mean of 3.95±1.65 mSv/yr. The resulting excess lung cancer risk was estimated; it ranged from 62 to 216 excess deaths per million persons per year (MPY), 81 to 243 excess deaths per MPY, or 135 excess deaths per MPY, based on whether risk factors reported by the U.S. Environmental Protection Agency, United Nations Scientific Committee on the effects of Atomic Radiation, or International Commission on Radiological Protection were used, respectively. These values are more than double the world average values reported by the same agencies. Conclusion: There is an elevated level of risk of lung cancer from indoor radon in locations close to the Betare-Oya gold mining region in east Cameroon. Therefore, educating the public on the harmful effects of radon exposure and considering some remedial actions for protection against radon and its progenies is necessary.

Germination and Seedling Growth in Response to Ionizing Radiation in Creeping Bentgrass (Agrostis palustris Huds.)

  • Lee, Yong Jin;Hong, Min Jeong;Kim, Dae Yeon;Lee, Tong Geon;Kim, Dong Sub;Kim, Jin Baek;Lee, Byung Cheol;Han, Young Hwan;Seo, Yong Weon
    • Korean Journal of Breeding Science
    • /
    • v.40 no.1
    • /
    • pp.15-21
    • /
    • 2008
  • It was previously pointed out that mutation is the ultimate source of variation. Adequate variation is needed for plant breeding if there is a limitation in natural genetic resources. When the ionizing radiation has been known to cause chromosomal and genomic alternations, it is widely used for inducing mutagenesis. The electron beam as an ionizing radiation is the principal physical mutagens that induces mutation and effectively used in plant breeding. Since dose-response relationships of electron beam in plant species are rarely known, we investigated the seed germination rate and early seedling growth of irradiated seeds of creeping bentgrass (Agrostis palustris Huds., cv Penn-A1) with various electron beam irradiating conditions (1, 1.3, 2 MeV at both 0.03 mA and 0.06 mA with dose of 100 Gy (Gray) and 0.03, 1, 1.3, 2 MeV at 0.03 mA with dose of 200 Gy, respectively) using electron accelerator at Korea Atomic Energy Research Institute. The growth parameters in terms of shoot length, primary root length, and secondary root length showed similar response between 0.06 / 1 (mA / MeV) at 100 Gy and 0.03 / 0.3 (mA / MeV) at 200 Gy. Bentgrass seed germination was mainly affected by the intensity of irradiated dose (Gray). Germination rate was lowered as the irradiated dose increased. On the other hand, early seedling growth was mainly governed not by the dose of radiation but by voltage.

Change of Serum Steroid Level in the Whole-body Irradiated Rat (방사선 처리를 받은 흰쥐의 혈청내 스테로이드호르몬의 변화)

  • Shin, Jang-Sik;Lee, Young-Keun;Kim, Moon-Kyoo;Yoon, Yong-Dal
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.21 no.3
    • /
    • pp.297-303
    • /
    • 1994
  • The effect of radiation on the steroidogenesis of rat ovary was investigated. For this purpose, female rats aged 7-8 weeks were exposed to a single dose of ${\gamma}$ radiation(320 rad or 800 rad) by the cobalt-60. At fourth(day of the first estrus) and eighth(day of the second estrus) days after irradiation, the concentrations of serum steroid hormones were determined by radioimmunoassays (RIA). The correlation between survival rate(Y) and radiation dose(X) was Y=-0.06X+100(r=0.89, n=10). Lethal dose$(LD)_{50(30)}$ and $LD_{20(30)}$ were 833.33rad and 333.33rad respectively. The weights of body and ovary was decreased significantly by the $LD_{50(30)}$ irradiation during the 4 days, but both weights were recovered at day 8. The serum levels of 17a-hydroxyprogesterone(170HP) and estradiol($E_2$) in the irradiated rats were not generally different from those of control. However, the levels of testosterone(T) and 19-norterstosterone(19NT) in the irradiated rat at $LD_{50(30)}$ and $LD_{20(30)}$ radiation doses were decreased, while progesterone levels in serum of the irradiated rats were slightly increased. These results suggest that irradiation may inhibit the first step of steroidogenesis, especially the conversion of P to T, in the rat ovary.

  • PDF

The Safety Assessment of Surrounding Dose on Nuclear Medicine Test by Use The F-18 FDG (F-18 FDG를 이용한 핵의학 검사에서 주변 선량의 안전성 평가)

  • Kwak, Byung-Joon;Ji, Tae-Jeong;Min, Byung-In
    • Journal of the Korean Society of Safety
    • /
    • v.24 no.6
    • /
    • pp.157-162
    • /
    • 2009
  • Radioactive medicines are used a lot owing to the increase of a PET-CT examination using glucose metabolism useful for the early diagnosis of diseases. Therefore, the spatial dose that is generated from patients and their surroundings causes the patients' guardians and health professional to be exposed to radiation. However, they get unnecessarily exposed to radiation because medical institutions lack in space for isolation and recognition of the examination. This research intended to examine the spatial dose rates by measuring the dose emitted from the patient for 48 hours to whom F-18 FDG was administered. The spatial dose rates that were measured 100cm away from the patient's body after F-18 FDG was injected were $65.88{\mu}$Sv/hr at 60-minute point, $45.13{\mu}$Sv/hr at 90-minute point, $9.88{\mu}$Sv/hr at 6-hour point, and $1.24{\mu}$Sv/hr at 12-hour point. When the dose that the guardian and health professional got was converted into the annual(240-day working) accumulative dose, it was examined that the guardian received 81.56 mSv/yr and health professional received 49.36mSv/yr. In addition, the result has revealed that the dose that the patient received from one time of PET-CT examination was 3.75mSv/yr, which is 1.5 times more when compared with the annual natural radiation exposure dose.

Assessment of Gamma-radiation dose Rate in the Ogcheon Lower Phyllite Area, Goesan County, Korea, Using Gamma-ray Spectrometry (감마선분광분석기를 이용한 괴산 옥천하부천매암대 일대의 감마선량 평가)

  • Yun, Uk;Cho, Byong-Wook
    • The Journal of Engineering Geology
    • /
    • v.29 no.4
    • /
    • pp.461-468
    • /
    • 2019
  • Gamma-radiation dose rates were measured at 77 points around the Ogcheon lower phyllite zone (og2) in Goesan County, Korea, using gamma-ray spectrometry. Sample K contents were in the range 1.8-8.8% (average 4.6%), highest in Kgr. The eU contents were 0.2-217.9 ppm (average 16.7 ppm), highest in og2 (median 29.6 ppm). The eTh contents were 11.9-76.5 ppm (average 29.5 ppm) and the average eTh content of Kgr was 45.4 ppm, higher than those of Ogcheon meta-sedimentary rocks (og1, og2, and og3) (26.6-30.6 ppm). Except for some high-uranium sites in og2, 40K is the main radioactive material contributing to the gamma-radiation dose in the study area. Our results indicate that the outdoor effective dose rate of the area is 0.08-1.71 mSv y-1 (average 0.28 mSv y-1), with most areas apart from three points in og2 displaying dose rates <1 mSv y-1, which is the normal natural radiation background level.

Radionuclide concentrations in agricultural soil and lifetime cancer risk due to gamma radioactivity in district Swabi, KPK, Pakistan

  • Umair Azeem;Hannan Younis;Niamat ullah;Khurram Mehboob;Muhammad Ajaz;Mushtaq Ali;Abdullah Hidayat;Wazir Muhammad
    • Nuclear Engineering and Technology
    • /
    • v.56 no.1
    • /
    • pp.207-215
    • /
    • 2024
  • This study focuses on measuring the levels of naturally occurring radioactivity in the soil of Swabi, Khyber Pakhtunkhwa, Pakistan, as well as the associated health hazard. Thirty (30) soil samples were collected from various locations and analyzed for 226Ra, 232Th, and 40K radioactivity levels using a High Purity Germanium detector (HPGe) gamma-ray spectrometer with a photo-peak efficiency of approximately 52.3%. The average values obtained for these radionuclides are 35.6 ± 5.7 Bqkg-1, 47 ± 12.5 Bqkg-1, and 877 ± 153 Bqkg-1, respectively. The level of 232Th is slightly higher and 40K is 2.2 times higher than the internationally recommended limit of 30 Bqkg-1 and 400 Bqkg-1, respectively. Various parameters were calculated based on the results obtained, including Radium Equivalent (Raeq), External Hazard (Hex), Absorbed Dose Rate (D), Annual Gonadal Equivalent Dose (AGDE), Annual Effective Dose Rate, and Excess Lifetime Cancer Risk (ELCR), which are 170.3 ± 24 Bqkg-1, 0.46 ± 0.06 Bqkg-1, 81.4 ± 2.04 nGy h-1, 582 ± 78.08 µSvy-1, 99.8 ± 13.5 µSv Gy-1, and 0.349 ± 0.04, respectively. These values are below the limits recommended by the United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) in 2002. This study highlights the potential radiation threats associated with natural radioactivity levels in the soil of Swabi and provides valuable information for public health and safety.

Effect of the Space Dose Rate due to Change of X-ray Irradiation Energy and MU Value in Radiation Therapy Room (선형가속기의 엑스선 조사에너지와 MU값의 변화가 치료실 내 공간선량률 변화에 미치는 영향)

  • Kwon, Hyeonghyo;Park, Geonryul;Kim, Minji;Jo, Yeongdan;Kim, Youngjae
    • Journal of the Korean Society of Radiology
    • /
    • v.14 no.2
    • /
    • pp.77-83
    • /
    • 2020
  • This study investigated the radiation protection of therapeutic radiologists. Based on the change in X-ray energy and MU value, the space dose rate in the treatment room after the irradiation was measured. 6MV, 10MV and 15MV photon beams were exposed to radiation inside the treatment room based on 300MU, 600MU and 1000MU using a linear accelerator. And repeated 10 times under the same conditions. As a result of the experiment, 0.1555 μSv/h for 6MV 300MU, 0.157 μSv /h for 300sec, 0.152 μSv/h, 0.156 μSv/h for 600MU, and 0.157 μSv/h 0.152 μSv/h for 1000MU. 300MU of 10MV was 0.49 μSv/h, 0.309 μSv/h, and 0.69 μSv/h, 0.416 μSv/h for 600MU, respectively, and 1000MU was 0.977 μSv/h and 0.478 μSv/h, respectively. The 300MU of 15MV was 3.02 μSv/h, 1.2 μSv/h, 5.459 μSv/h at 600MU, 7.34 μSv/h at 1.836 μSv/h 1000MU, and 2.709 μSv/h. The average spatial dose rate of 6MV was not significantly different from the natural spatial dose rate in the treatment room. High spatial dose rates were measured at 10 MV and 15 MV and were attenuated over time. Therefore, entering the treatment room after a certain period of time (more than 60 seconds) is considered to be effective to prevent the exposure dose of radiation workers.

Risk Management on Radiation Under Prolonged Exposure Situation - Focusing on the Tokyo Metropolitan Area in Japan Under the TEPCO Fukushima dai-ich NPP Accident -

  • Iimoto, Takeshi;Hayashi, Rumiko;Kuroda, Reiko;Furusawa, Mami;Umekage, Tadashi;Ohkubo, Yasushi;Takahashi, Hiroyuki;Nakamura, Takashi
    • International Journal of Safety
    • /
    • v.11 no.1
    • /
    • pp.33-36
    • /
    • 2012
  • Examples and experiences of risk management on radiation under prolonged exposure situation are shown. The accident of the Fukushima dai-ichi nuclear power plant after the great east Japan earthquake (11 March, 2011) elevates background level of environmental radiation around the east Japan. For example, ambient dose equivalent rate around Tohkatsu area next to Tokyo located about 200 km-south from the plant, is about 0.1-0.6 micro-Sv $h^{-1}$ mainly due to $^{134}Cs$ and $^{137}Cs$ falling on the ground soil. This level is about double or up to ten times higher than the genuine natural level around the area. International Commission on Radiological Protection (ICRP) recommends how to face the existing exposure situation; that is the prolonged exposure situation. Referring to ICRP's reports and/or related international/domestic documents, we have been discussing and acting to gain public's safety and relief, who have a possibility to be exposed to prolonged lower-dose radiation. Here, we introduce our several experiences on risk management, especially focusing on risk communication, radiation education to public, and stakeholder involvements into making decision in local governments on radiation protection, relating to the accident.