• Title/Summary/Keyword: Natural radiation

Search Result 832, Processing Time 0.027 seconds

Effects of surface radiation on the insulation for mechanical system (표면복사특성이 단열성능에 미치는 영향)

  • Oh, Dong-Eun;Park, Jong-Il;Lee, Min-Woo;Hong, Jin-Kwan;Kang, Byung-Ha;Kim, Suk-Hyun
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.1006-1011
    • /
    • 2006
  • In this study, a rational procedures for estimation of insulation thickness for condensation control or personnel protection has been investigated. Both horizontal pipe and vertical wall configuration are included. Design parameters are pipe diameter or, height of the wall, thermal conductivity, emissivity, and operating temperatures. The results Indicated that the surface emissivity plays a very important role in the design of insulation for the purpose of surface temperature control, especially in natural convection situation. radiation heat transfer coefficients for some new insulation material surface, such as elastomers, estimated to be more than 90% of the total surface heat transfer coefficient. Adequate revision of specifications or standards has been also suggested.

  • PDF

Bentonite based ceramic materials from a perspective of gamma-ray shielding: Preparation, characterization and performance evaluation

  • Asal, Sinan;Erenturk, Sema Akyil;Haciyakupoglu, Sevilay
    • Nuclear Engineering and Technology
    • /
    • v.53 no.5
    • /
    • pp.1634-1641
    • /
    • 2021
  • Exposure to gamma-rays is hazardous for humans and other living beings because of their high penetration through the materials. For this reason, shielding materials (usually lead, copper and stainless steel) are used to protect against gamma rays. This study's objective was to prepare ceramic materials for gamma radiation shielding by using different natural bentonite clays. Gamma-ray attenuation performances of the prepared shielding materials at different thicknesses were investigated and evaluated for different gamma-ray energies from different standard point gamma radiation sources (251Am, 57Co, 137Cs, 60Co, and 88Y). The mass and linear attenuation coefficients of the prepared ceramics vary between 0.238 and 0.443 cm2 g-1 and between 0.479 and 1.06 cm-1, respectively, depending on their thicknesses. Results showed that these materials could be prioritized because of their evidential properties of gamma radiation protection in radiation applications.

A literature review on expansion of dental hygienists' radiography operations (치과위생사의 방사선 촬영업무의 확대에 대한 문헌적 고찰)

  • Choi, Young-Suk;Kim, Jin-Kyoung;Jang, Jong-Hwa;Park, Yong-Duk
    • Journal of Korean society of Dental Hygiene
    • /
    • v.9 no.2
    • /
    • pp.111-124
    • /
    • 2009
  • This study analyzes through the review of literature and laws the exposure time, clinical frequency, and radiation exposure of intraoral and extraoral radiography as well as of panoramic radiography performed by dental hygienists in dental clinics, compares the dental radiology curriculums of radiological science and dental hygiene departments, and proposes the expansion of dental hygienists' radiography operations. The radiology curriculums were compared between the radiological science and dental hygiene departments of colleges. For new analysis by radiography for dental diagnosis, the exposure time, radiation absorbed dose, effective dose, and number of days of natural radiation were compared by the type of oral radiation films and radiographical techniques proposed by domestic and international studies. The exposure time of panoramic radiography is 15 seconds and it takes about two minutes for completion, whereas the exposure time of the standard radiography is 0.2~0.8 seconds and it takes 10 times longer for completion of the radiography of full mouth than the panoramic radiography. The standard radiography can cause distortions of radiation at severely curved parts of dental arch and palatopharyngeal reflex. However, panoramic radiography can be performed even for lock jaw patients, causes less inconvenience to patients and is much simpler than the standard radiography. The percentage of dental clinics where radiography is performed by dental hygienists was 92.0%, and the percentage of standard film radiography by dental hygienists was 98% whereas the percentage of panoramic radiography by dental hygienists was 92%. For the absorbed dose which is an indicator of radiation exposure, the When the effective dose which is an indicator of the danger of radiation exposure was converted to the number of days of natural radiation, it was 3.3 days for panoramic radiography, but 13.9 days for the full mouth standard radiography by bisecting angle technique which was 4.2 times longer than the panoramic radiography. There were two colleges that had a dental radiology course with two credits in the departments of radiological science. The credits for dental radiology courses in the department of dental hygiene ranged varied by college, ranging from 3 to 8; on average, the theory course was 2.2 credits and the practice course was 2.02 credits. To summarize the above results, the percentage of dental clinics where panoramic radiography is performed by dental hygienists under the guidance of dentists is high. Panoramic radiography has become an essential facility for dental clinics. It is faster than standard film radiography and less dangerous due to low radiation exposure. Panoramic radiography is a simple mechanical job that does not require training of oral radiography by radiotechnologist. Because panoramic radiography is one of major operations which must be performed at all times in dental clinics, it must be designated as intraoral technique rather than extraoral technique, or legalized for inclusion in the scope of operations of dental hygienists.

  • PDF

Analysis of Cosmic Radiation Dose of People by Abroad Travel (일반인들의 항공여객기 이용 시 우주방사선 피폭선량 비교 분석)

  • Jang, Donggun;Shin, Sanghwa
    • Journal of radiological science and technology
    • /
    • v.41 no.4
    • /
    • pp.339-344
    • /
    • 2018
  • Humans received an exposure dose of 2.4 mSv of natural radiation per year, of which the contribution of spacecraft accounts for about 75%. The crew of the aircraft has increased radiation exposure doses based on cosmic radiation safety management regulations There is no reference to air passengers. Therefore, in this study, we measured the radiation exposure dose received in the sky at high altitude during flight, and tried to compare the radiation exposure dose received by ordinary people during flight. We selected 20 sample specimens, including major tourist spots and the capital by continent with direct flights from Incheon International Airport. Using the CARI-6/6M model and the NAIRAS model, which are cosmic radiation prediction models provided at the National Radio Research Institute, we measured the cosmic radiation exposure dose by the selected flight and departure/arrival place. In the case of exposure dose, Beijing was the lowest at $2.87{\mu}Sv$ (NAIRAS) and $2.05{\mu}Sv$ (CARI - 6/6M), New York had the highest at $146.45{\mu}Sv$ (NAIRAS) and $79.42{\mu}Sv$ (CARI - 6/6M). We found that the route using Arctic routes at the same time and distance will receive more exposure dose than other paths. While the dose of cosmic radiation to be received during flight does not have a decisive influence on the human body, because of the greater risk of stochastic effects in the case of frequent flights and in children with high radiation sensitivity Institutional regulation should be prepared for this.

Reduction of Immune Toxicity of LPS by Gamma Irradiation (감마선 조사에 의한 LPS의 면역 독성 저감화)

  • Park, Jong-Heum;Sung, Nak-Yun;Byun, Eui-Beak;Song, Du-Sup;Song, Beom-Seok;Kim, Jaekyung;Lee, Ju-Woon;Park, Sang-Hyun;Kim, Jae-Hun;Kang, Geon-Ok;Yoo, Young-Choon
    • Journal of Radiation Industry
    • /
    • v.6 no.3
    • /
    • pp.217-221
    • /
    • 2012
  • The purpose of this study is to reduce the immune toxicity of lipopolysaccharide (LPS) by gamma irradiation. LPS was gamma-irradiated at the various doses of 20, 100 and 200 kGy and then evaluated on the immune toxicity through the cell proliferation, nitricoxide production and cytokine release. Cell proliferation significantly decreased in the intact LPS treated groups, whereas gamma-irradiated LPS treated group were not reduced the cell proliferation. Similarly, the production of nitric oxide and cytokine showed the high levels in the intact LPS treated group. However, gamma-irradiated LPS treated group remarkably decreased the production of nitric oxide and cytokine in dose-dependent manner. Therefore, gamma irradiation may effective method to reduce the immune toxicity of LPS.

Case Study of Radiation Protection and Radiation Exposure (방사능 노출과 방사선 보호 사례 연구)

  • Young Sil Min
    • Advanced Industrial SCIence
    • /
    • v.2 no.3
    • /
    • pp.1-7
    • /
    • 2023
  • Recently, it is increasing that a issue of concern about radiation exposure. It affects soil, water, air, crops, etc., and in the long term, environmental pollution and food pollution occur, and it is considered to cause social problems and economic damage. Radiation exposure causes diseases and health problems, but as a method for diagnosing diseases, nuclear medicine tests such as X-ray imaging, CT, and PET-CT are conducted, and radiation isotopes are exposed for the purpose of cancer treatment. A Hungarian case study on radiation in water, particularly drinking water, following the release of radioactive waste from Fukushima, and an examination of the Larsemann Hills area in Antarctica, found that it was within the prescribed radioactivity limits of drinking water recommended by the World Health Organization. We looked at radioprotective agents, focusing on DNA damage, cell and organ damage, and cancer, and also investigated various literatures on ACE inhibitors, antioxidants, and natural substances among restoration materials. Although exposed to radiation in everyday life, the reason why it can be safe is probably because there is a radiation protection material and a recovery material for radiation exposure, so we are trying to find possible materials.

Application of Irradiation Technology for Dvelopment of Functional Natural Materials (천연물 유래 기능성 소재 개발에서 방사선 조사기술의 적용)

  • Lee, Na-Young;Jo, Cheor-Un;Byun, Myung-Woo
    • Food Industry And Nutrition
    • /
    • v.10 no.2
    • /
    • pp.26-31
    • /
    • 2005
  • 천연물 유래 기능성 물질 탐색의 일환으로 녹차 추출물의 산업적 적용을 용이하게 하기 위하여 감마선 조사를 병용하여 추출물의 색도 및 라디칼 소거능을 확인하고, 이 추출 파우더를 돈육 패티에 적용하여 항산화, 색도 및 관능검사를 통해 기호도를 조사하였다. 생리활성을 가지는 녹차 잎 추출물의 라디칼 소거능은 $68.2\%$를 나타냈으며, 20 kGy로 조사했을 경우 비조사구와 큰 차이를 나타내지 않았다. 또한, 감마선조사에 의한 색도의 변화는 감마선 조사 후 $L^{\ast}-value$는 증가했고, $a^{\ast}$- 및 $b^{\ast}-value$는 감소하는 것으로 확인되었다. 또한, 녹차 잎 추출 파우더를 돈육 패티에 적용해본 결과 비첨가구에 비해 라디칼 소거능 및 지질 산화를 지연시키며, 조사된 녹차 잎 추출 파우더를 첨가한 돈육패티가 비첨가구 혹은 비조사된 녹차 잎 첨가구에 비해 저장 기간에 따라$L^{\ast}-value$가 높게 나타났다. 또한, 모든 처리구에서 관능적으로도 큰 차이를 보이지 않았다 그러므로 천연물 유래 녹차 추출물 파우더는 돈육 패티의 기능성 첨가제로서 우수하며, 감마선 조사는 녹차 잎 추출 파우더의 산업적 적용을 용이하게 하는 방법 중의 하나라고 사료된다.

  • PDF

Status of Radiation Dose and Radioactive Contamination due to the Fukushima Accident

  • Baba, Mamoru
    • Journal of Radiation Protection and Research
    • /
    • v.41 no.2
    • /
    • pp.133-140
    • /
    • 2016
  • Backgrounds: The accident at Fukushima Daiichi Nuclear Power Plant (NPP), March 2011, caused serious radioactive contamination over wide area in east Japan. Therefore, it is important to know the effect of the accident and the status of NPP. Materials and Methods: This paper provides a review on the status of radiation dose and radioactive contamination caused by the accident on the basis of publicized information. Results and Discussion: Monitoring of radiation dose and exposure dose of residents has been conducted extensively by the governments and various organizations. The effective dose of general residents due to the accident proved to be less than a mSv both for external and internal dose. The equivalent committed dose of thyroid was evaluated to be a few mSv in mean value and less than 50 mSv even for children. Monitoring of radioactivity concentration has been carried out on food ingredients, milk and tap water, and actual meal. These studies indicated the percentage of foods above the regulation standard was over 10% in 2011 but decreasing steadily with time. The internal dose due to foods proved to be tens of ${\mu}Sv$ and much less than that due to natural $^{40}K$ even in the Fukushima area and decreasing steadily, although high level concentration is still observed in wild plants, wild mushrooms, animals and some kind of fishes. Conclusion: According to extensive studies, not only the effect of the accident but also the pathway and countermeasures against radioactive contamination have been revealed, and they are applied very effectively for restoration of environment and reconstruction of the area.

Radiation Shielding Property of Concrete Using the Rapidly Cooled Steel Slag from Oxidizing Process in the Converter Furnace as Fine Aggregate

  • Kim, Jin-Man;Cho, Sung-Hyun;Kwak, Eun-Gu
    • Journal of the Korea Institute of Building Construction
    • /
    • v.12 no.5
    • /
    • pp.478-489
    • /
    • 2012
  • Each year, about four million tons of steel slag, a by-product produced during the manufacture of steel by refining pig iron in the converter furnace, is generated. It is difficult to recycle this steel slag as aggregate for concrete because the reaction with water and free-CaO in steel slag results in a volume expansion that leads to cracking. However, the steel slag used in this study is atomized using an air-jet method, which rapidly changes the melting substance at high temperature into a solid at a room temperature and prevents free-CaO from being generated in steel slag. This rapidly-cooled steel slag has a spherical shape and is even heavier than natural aggregate, making it suitable for the aggregate of radiation shielding concrete. This study deals with the radiation shielding property of concrete that uses the rapidly-cooled steel slag from the oxidizing process in the converter furnace as fine aggregate. It was shown that the radiation shielding performance of concrete mixed with rapidly-cooled steel slag is even more superior than that of ordinary concrete.

Effect of Gamma Ray on Molecular Structures of Alkali-Lignin (감마선이 알칼리 리그닌의 분자구조에 미치는 영향)

  • Kim, Du Yeong;Jeun, Joon Pyo;Shin, Hye Kyoung;Kang, Phil Hyun
    • Journal of Radiation Industry
    • /
    • v.5 no.3
    • /
    • pp.249-252
    • /
    • 2011
  • Lignin is one of the natural macromolecules. Every year large amount of lignin arises from the cellulose production as a by-product worldwide. The use of lignin as a precursor to carbonaceous materials has gained interest due to its low cost and high availability. Therefore, we improved the properties of alkali-lignin by exposing to gamma ray in this study. The alkali-lignin is irradiated by Gamma ray irradiation with varying doses. The char yields of alkali-lignin were investigated by increasing up to 50 kGy. The cross-linking and bond scission of alkali-lignin occur simultaneously during gamma ray irradiation. The crosslinking was predominantly accelerated by gamma ray irradiation up to 50 kGy. Bond scission predominantly occurs between 50 and 500 kGy. ESCA analysis indicated that the alcoholic carbon increase up to 50 kGy. Solution viscosity was increased as absorbed dose increased up to 20 kGy. In addition, the aromatic ring was not influenced by irradiation at doses ranging from 20 to 500 kGy as shown in FT-IR results.