• Title/Summary/Keyword: Natural purification

Search Result 511, Processing Time 0.019 seconds

Purification and Characterization of Farnesyl Protein Transferase from Bovine Testis

  • Ryo, Kwon-Yul;Baik, Young-Jin;Yang, Chul-Hak
    • BMB Reports
    • /
    • v.28 no.3
    • /
    • pp.197-203
    • /
    • 1995
  • Famesyl protein transferase involved in the first step of post-translational modification of $p21^{ras}$ proteins transfers the famesyl moiety from famesyl pyrophosphate to a cysteine residue in $p21^{ras}$ proteins. The enzyme was first purified 30,000-fold from bovine testis by use of 30~50% ammonium sulfate fractionation, DEAE-Sephacel ion exchange chromatography, Sephacryl S-300 gel filtration chromatography, Sephacryl S-200 gel filtration chromatography, and hexapeptide (Lys-Lys-Cys-Val-Ile-Met) affinity chromatography. The molecular weight of the purified enzyme was estimated to be ~100 kDa by gel filtration and SDS-polyacrylamide gels showed two closely spaced bands of ~50 kDa protein. These indicate that the enzyme consists of two nonidentical subunits, a and 13, which have slightly different molecular weights. The enzyme was inhibited by hexapeptide (Lys-Lys-Cys-Val-Ile-Met), which acted as an alternative substrate that competed for famesylation. Kinetic analysis by measuring initial velocities showed that famesyl protein transferase is a very slow enzyme. EDTA-treated famesyl protein transferase showed little activity with $Mg^{2+}$ or $Zn^{2+}$ alone, but required both $Mg^{2+}$ and $Zn^{2+}$ for the catalytic activity.

  • PDF

Purification and Characterization of Tyrosinase from Solanum melongena

  • Lee, Jong-Liong;Kong, Kwang-Hoon;Cho, Sung-Hye
    • BMB Reports
    • /
    • v.30 no.2
    • /
    • pp.150-156
    • /
    • 1997
  • Tyrosinase was purified from Solanum melongena by ammonium sulfate precipitation, Sephadex G-150 and DEAE-Sephacel column chromatography. The molecular weight of the purified tyrosinase was approximately 88,600 daltons with 805 amino acid residues. The amino acid composition showed the characteristic high contents of glycine, glutamic acid and serine residues. The enzyme had high substrate specificity towards (+)-catechin. The $K_m$, value for L-DOPA was 20.8 mM. L-ascorbic acid, ${\beta}-mercapto-ethanol$, sodium diethyldithiocabamate, KCN and $NaN_3$ had strong inhibitory effects on enzyme activity. Sodium diethyldithiocabamate was a competitive inhibitor of the enzyme with a $K_i$ value of $5.2{\times}10^{-2}\;mM$. The optimum pH of the enzyme was 9.0 and the optimum temperature was $65^{\circ}C$ with L-DOPA as a substrate. In addition, the activity was enhanced by addition of $Ca^{+2}$ or $Cu^{+2}$, but decreased in the presence of $Fe^{2+},Fe^{3+}$ and $Zn^{2+}$ ions.

  • PDF

Expression and Characterization of Recombinant Human Cu,Zn-Superoxide Dismutase in Escherichia coli

  • Kang, Jung-Hoon;Choi, Bong-Jin;Kim, Sung-Moon
    • BMB Reports
    • /
    • v.30 no.1
    • /
    • pp.60-65
    • /
    • 1997
  • Expression of human Cu.Zn-superoxide dismutase (SOD) with activity comparable to human erythrocyte enzyme was achieved in E. coli B21(DE3) by using the pET-17b expression vector containing a T7 promoter. Recombinant human SOD was found in the cytosol of disrupted bacterial cells and represented > 25% of the total bacterial proteins. The protein produced by the E. coli cells was purified using a combination of ammonium sulfate precipitation, Sephacryl S-100 gel filtration and DEAE-Sephacel ion exchange chromatography. The recombinant Cu,Zn-SOD and human erythrocyte enzyme were compared using dismutation activity, SDS-PAGE and immunoblotting analysis. The mass of the subunits was determined to be 15,809 by using a electrospray mass spectrometer. The copper specific chelator. diethyldithiocarbamate (DOC) reacted with the recombinant Cu,Zn-SOD. At $50{\mu}M$ and $100{\mu}M$ concentrations of DOC, the dismutation activity was not inhibited for one hour but gradually reduced after one hour. This result suggests that the reaction of DOC with the enzyme occurred in two distinct phases (phase I and phase II). During phase I of this reaction, one DOC reacted with the copper center, with retention of the dismutation activity while the second DOC displaced the copper, with a loss of activity in phase II.

  • PDF

Immobilization and Stability of Lipase from Mucor racemosus NRRL 3631

  • Adham, Nehad Zaki;Ahmed, Hanan Mostafa;Naim, Nadia
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.2
    • /
    • pp.332-339
    • /
    • 2010
  • The lipase from Mucor racemosus NRRL 3631 was partially purified by fractional precipitation using 60% ammonium sulfate, which resulted in a 8.33-fold purification. The partially purified lipase was then immobilized using different immobilization techniques: physical adsorption, ionic binding, and entrapment. Entrapment in a 4% agar proved to be the most suitable technique (82% yield), as the immobilized lipase was more stable at acidic and alkaline pHs than the free enzyme, plus 100% of the original activity was retained owing to the thermal stability of the immobilized enzyme after heat treatment for 60 min at $45^{\circ}C$. The calculated half-lives (472.5, 433.12, and 268.5 min at 50, 55, and $60^{\circ}C$, respectively) and the activation energy (9.85 kcal/mol) for the immobilized enzyme were higher than those for the free enzyme. Under the selected conditions, the immobilized enzyme had a higher $K_m$ (11.11 mM) and lower $V_{max}$ (105.26 U/mg protein) when compared with the free enzyme (8.33 mM and 125.0 U/mg protein, respectively). The operational stability of the biocatalyst was tested for both the hydrolysis of triglycerides and esterification of fatty acids with glycerol. After 4 cycles, the immobilized lipase retained approximately 50% and 80% of its original activity in the hydrolysis and esterification reactions, respectively.

Evaluation Model for Environmentally Friendliness of Tourism Farms by LISREL Structural Equation Model (LISREL 구조방정식 모델에 의한 농촌 관광농원의 환경친화성 평가 모형 추정)

  • Eom, Boong-Hoon
    • Journal of Korean Society of Rural Planning
    • /
    • v.5 no.2 s.10
    • /
    • pp.56-65
    • /
    • 1999
  • Recently, new concept and paradigm of 'Environmentally-Friendliness' is taking a growing interest in environmental planning and design. This study is to establish the evaluation model for environmentally-friendliness of 'Tourism Farms' in rural areas by LISREL structural equation model. A questionnaire survey was conducted for deputy manager group and expert group. As the Result of LISREL structural equation model, the environmentally-friendliness of tourism farms is composed of three categories. First, conservation of global environment (Low Impact), second, friendliness to surrounding nature(High Contact), and third, environmental health and amenities (Health & Amenity). Five indicators, such as (1)saving of energy and water resource, (2)reduction and reuse of garbage, (3)natural purification of sewage disposal, (4)utilization of natural energy, (5)campaign and education programs of environmentally-friendliness, were affecting the first category, i.e., conservation of global environment(Low Impact). Friendliness to surrounding nature (High Contact) is affected by 3 indicators, (1)contact to nature and diverse green areas, (2)water intimate & contact areas, (3)natural ecology observation by biotope. Finally, the dimension of environmental health and amenity is affected by 3 indicators, (1)nature affinity by farming experience, (2)environmental-friendliness of soil & crops by organic farming, (3) campaign and education programs of environmentally-friendliness. Total coefficient of determination of the structural equation model by LISREL was 0.897, which showed high explanatory power.

  • PDF

Indicators for Environmentally Friendliness of Tourism Farms in Rural Areas (농촌 관광농원의 환경친화성 평가지표 개발에 관한 연구)

    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.27 no.3
    • /
    • pp.69-79
    • /
    • 1999
  • Recently, new concept and paradigm of 'Environmentally-Friendless' is taking a growing interest in environmental planning and design. This study is to develop the new approach of sustainable development, and to establish the indicators for environmentally-friendliness of "Tourism Farms" in rural areas. A questionnaire survey was conducted for deputy manager group and expert group. The environmentally-friendliness of tourism farms is composed of three categories, conservation of global environment(Low Impact), friendliness to surrounding nature(High Contact), and environmental health and amenities (Health '||'&'||' Amenity). Four indicators, such as saving of energy and water resource, reduction and reuse of garbage, natural purification of sewage disposal, and utilization of natural energy, were affecting the first category, i.e., conservation of global environment(Low Impact). And, friendliness to surrounding nature (High Contact) is affected by 3 indicators, such as contact to nature and diverse green areas, water intimate '||'&'||' contact areas, and natural ecology observation by biotope. Finally, the dimension of environmental health and amenity is affected by 3 indicators, such as nature affinity by farming experience, environmental-friendliness of soil '||'&'||' crops by organic farming, campaign and education programs of environmentally-friendliness. From the result of Importance-Performance Analysis(IPA) for 10 indicators, environmentally-friendliness was recommended as 'Concentrate Here'. And, the content validity of 10 indicators for 3 categories was examined by factor analysis. The result showed as the same as hypothetical model, which proved the validity of hypothetical model.

  • PDF

Purification and Characterization of A Cell Wall Hydrolyzing Enzyme Produced by An Alkalophilic Bacillus sp. BL-29

  • Hong, Soon-Duck;Kim, Tae-Ho;Hong, Soon-Duck
    • Journal of Microbiology and Biotechnology
    • /
    • v.5 no.4
    • /
    • pp.206-212
    • /
    • 1995
  • A strain BL-29, which produces a extracellular lytic enzyme on E. coli was isolated from the soil. The strain was identified as belonging to the genus Bacillus sp. The lytic enzyme was purified to homogeneity by ion exchange chromatography and gel filtration. Specific activity of the purified enzyme was 28, 850 U/mg protein and yield of the enzyme was 5$%$. The purified enzyme showed a single band on SDS-PAGE and its molecular weight was estimated to be 31, 000 by SDS-polyacrylamide gel electrophoresis and gel filtration column chromatography. The optimum temperature and pH were $55^{\circ}C$ and pH 10.0, respectively. The enzyme was stable at $45^{\circ}C$ but enzyme activity was reduced by up to 50$%$ when the temperature was raised to $55^{\circ}C$ for 15 min. Stable range of pH was from 5.0 to 11.0. but Enzyme activity was inhibited by lead-acetate, mercuric chloride, ethylene glycol-bis-[$\beta$-aminoethyl ether]-N, N, $N^1, $N^1$-tetraacetic acid (EGTA), and ethylenediamine tetraacetic acid (EDTA), but not affected considerably by treatment with other chemical reagents.

  • PDF

Purification and Structure Determination of Antifungal Phospholipids from a Marine Streptomyces

  • Cho, Ki-Woong;Seo, Young-Wan;Yoon, Tae-Mi;Shin, Jong-Heon
    • Journal of Microbiology and Biotechnology
    • /
    • v.9 no.6
    • /
    • pp.709-715
    • /
    • 1999
  • A series of antifungal compounds were obtained from the methanol extract of the mycelium from marine actinomycetes M428 which was identified as a Stereptomyces species by fatty acid composition and biochemical characteristics. These compounds were purified by combined chromatographic techniques and the structures were characterized with spectroscopic methods including 1D and 2D NMR, and mass spectrometry as sn-l lysophosphatidyl inositols. The side chains were established by chemical degradation followed by GC analysis to be 14-methyl pentadecanoic acid (iso-palmitic acid, i-C16:0, compound A) and 13-methyl tetradecanoic acid (iso-pentadecanoic acid, i-C15:0, compound B). These compounds displayed highly selective antifungal activity against C. albicans with MIC values of $5{\;}\mu\textrm{g}/ml$ (compound A) and $2.5{\;}\mu\textrm{g}/ml$ (compound B), while it had almost negligible antibiotic activity against E. coli and P aerogenosa with MIC value higher than $50{\;}\mu\textrm{g}/ml$ and no cytotoxic activities against human myeloma leukemia K562 ($IC_{50}>100{\;}\mu\textrm{g}/ml$).

  • PDF

Purification and Characterization of Anticoagulant Protein from Ark Shell, Scapharca broughtonii

  • Jung, Won-Kyo;Park, Pyo-Jam;Kim, Se-Kwon
    • Proceedings of the Korean Society of Fisheries Technology Conference
    • /
    • 2000.05a
    • /
    • pp.90-91
    • /
    • 2000
  • The physiological systems that control blood fluidity are both complex and elegant. Blood must remain fluid within the vasculature and yet clot quickly when exposed to nonendothelial surfaces at sites of vascular injury. There are two principle mechanisms to control a delicate balance in higher organisms (Davie & Ratnoff, 1964). Present evidence suggests that the intrinsic pathway play an important role in the growth and maintenance of fibrin formation in the coagulation cascade while a second overlapping mechanism, called the extrinsic pathway, is critical in the initiation of fibrin formation. Coagulation factors is in two mechanisms, and in order to clot blood, they are activated by a cooperation with $Ca^{2+}$, phospholipid and vitamin K etc. For example, the human placental anticoagulant protein (PAP of PAP- I), which is a $Ca^{2+}$ -dependent phospholipid binding protein (Funakoshi et al., 1987) inhibited the activity of factor Xa, so that it prolonged fibrin formation. We wondered whether any other protein was involved in regulation of the coagulant system as an anticoagulant protein from natural organisms. Natural agents would have not harmful side-effects in comparision with chemically synthesized materials such as warfarin, aspirin, phenindione, etc.. But anticoagulant agents from natural, especially marine organisms have hardly been researched except for polysaccharides from marine algae. (omitted)

  • PDF

Purification and Characterization of Soymilk-clotting Enzyme Produced by Penicillium sp.

  • Koo, Sung-Keun;Lee, Sang-Ok;Lee, Tae-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.2 no.1
    • /
    • pp.14-20
    • /
    • 1992
  • Some microorganisms isolated from soil, including some bacteria and fungi, were found to secrete an extracellular soymilk-clotting enzyme. Among them, an isolated fungus showed the highest soymilk-clotting activity and the strain was assigned to genus Penicillium based on its cultural and morphological characteristics, and designated as Penicillium sp. L-151K. Soymilk-clotting enzymes A and B produced by Penicillium sp. L-151K were purified by ammonium sulfate precipitation and chromatographies on Sephadex G-25, CM-Sephadex, Sephadex G-100 and phenyl-Toyopearl gel. The two purified enzymes A and B were found to be homogeneous by polyacrylamide gel electrophoresis at pH 9.5. The molecular weights of enzyme A and B were 24, 000 and 40, 000, respectively, by gel filtration on Sephadex G-100. Enzymes A and B coagulated soymilk optimally at $60^\circ{C}$ and were stable up to $50^\circ{C}$. Both enzymes were most active at pH 5.8 for soymilk coagulation, and were stable with approximately 80% of original activity from pH 3.0 to 5.0. Each enzyme was an acidic protease with an optimum pH of 3.0 for casein digestion. The soymilk-clotting efficiency of these enzymes was improved with $CaCl_2\;or\;MgCl_2$ when making soymilk-curd.

  • PDF