• Title/Summary/Keyword: Natural power energy

Search Result 587, Processing Time 0.036 seconds

A Theoretical Study for Stack Effect driven Natural Ventilation System in High-rise Building (고층건물에서 연돌효과를 활용한 자연환기시스템 설계를 위한 이론적 고찰)

  • Yoon, Sung-Min;Seo, Jung-Min;Kim, Yang-Soo;Lee, Joong-Hoon;Song, Doo-Sam
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.123-129
    • /
    • 2009
  • In these days, the green building movement caused by the energy crisis is increasing, passive design is getting mere and more attention as it provides many possibilities for energy conservation. Moreover, with the increasing social intention for healthy life, the demand for indoor air Quality is increasing in Korea. As result, the ventilation system which can provide the sound outdoor air constantly has been obliged in Korea. So, the hybrid system which using natural power and mechanical power and makes up for the shortage of mechanical and natural ventilation attracts people's attention in Korea. As a hybrid ventilation system, in this study, the stack effect driven hybrid ventilation system in high-rise residential building will be suggested. And in this paper, the theoretical review for hybrid ventilation system suggested in this study will be addressed. Especially, the characteristics of pressure distribution and airflow caused by stack effect in high-rise residential building and the possibility of natural ventilation as results of stack effect will be described.

  • PDF

An Experimental and Numerical Analysis on Performance Comparison of a Trigeneration Desiccant System and Conventional Air-conditioning System (Trigeneration 제습공조시스템과 일반공조시스템의 성능 비교 실험 및 수치해석)

  • Kim, Hyoung-Tae;Chae, Jungmin;Cho, Young-Ah;Park, So-jin;Song, Geun-Soo
    • Journal of the Korean Institute of Gas
    • /
    • v.22 no.3
    • /
    • pp.32-37
    • /
    • 2018
  • Recently, the distributed power generation market using natural gas is expected to expand gradually according to the government's future energy conversion policy. Distributed power generation means small power generation source near the power demand site, which has the advantage of reducing the construction costs of the transmission and distribution infrastructure, operating cost and power loss. A typical example of distributed generation using natural gas is the trigeneration system. In this study, we conducted a basic study on the performance analysis of trigeneration desiccant system for dehumidifying / cooling / heating in the air conditioner room by using the cold and engine waste heat energy generated in the trigeneration system. It shows that the system efficiency increases and the energy consumption decreases as the temperature difference between the inlet and outlet of the trigeneration system increases compared with the general air conditioning system.

Enhancement of wave-energy-conversion efficiency of a single power buoy with inner dynamic system by intentional mismatching strategy

  • Cho, I.H.;Kim, M.H.
    • Ocean Systems Engineering
    • /
    • v.3 no.3
    • /
    • pp.203-217
    • /
    • 2013
  • A PTO (power-take-off) mechanism by using relative heave motions between a floating buoy and its inner mass (magnet or amateur) is suggested. The inner power take-off system is characterized by a mass with linear stiffness and damping. A vertical truncated cylinder is selected as a buoy and a special station-keeping system is proposed to minimize pitch motions while not affecting heave motions. By numerical examples, it is seen that the maximum power can actually be obtained at the optimal spring and damper condition, as predicted by the developed WEC(wave energy converter) theory. Then, based on the developed theory, several design strategies are proposed to further enhance the maximum PTO, which includes the intentional mismatching among heave natural frequency of the buoy, natural frequency of the inner dynamic system, and peak frequency of input wave spectrum. By using the intentional mismatching strategy, the generated power is actually increased and the required damping value is significantly reduced, which is a big advantage in designing the proposed WEC with practical inner LEG (linear electric generator) system.

Analysis of the Influence of Post-Combustion $CO_2$ Capture on the Performance of Fossil Power Plants (후처리를 이용한 $CO_2$ 포집이 화력 발전설비 성능에 미치는 영향 해석)

  • Tak, Sang-Hyun;Kim, Tong-Seop;Chang, Young-Soo;Lee, Dae-Young;Kim, Min-Sung
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.8
    • /
    • pp.545-552
    • /
    • 2010
  • Research and development efforts to reduce $CO_2$ emission are in progress to cope with global warming. $CO_2$ emission from fossil fuel fired power plants is a major greenhouse gas source and the post-combustion $CO_2$ capture is considered as a short or medium term option to reduce $CO_2$ emissions. In this study, the application of the post-combustion $CO_2$ capture system, which is based on chemical absorption and stripping processes, to typical fossil fuel fired power plants was investigated. A coal fired plant and a natural gas fired combined cycle plant were selected. Performance of the MEA-based $CO_2$ capture system combined with power plants was analyzed and overall plant performance including the energy consumption of the $CO_2$ capture process was investigated.

A Effects of Natural Gas-Diesel/Hi-sene Dual Fuel Operation on Performance of a Heavy-Duty Diesel engine for Power Generation (발전용 대형 디젤 엔진의 천연가스-디젤/부생유(Hi-sene) 혼합연소 시 엔진 성능변화에 미치는 영향)

  • Cho, Jungkeun;Park, Sangjun;Song, Soonho
    • Journal of Energy Engineering
    • /
    • v.25 no.1
    • /
    • pp.122-130
    • /
    • 2016
  • This study is a numerical study using commercial simulation program GT-Power on 1.5MW diesel engine for power generation. Performance comparison has done for diesel operation with dual fuel operation for different engine load(50%, 75%, 100%) using the target engine model with additional gas injection system. Effect of using Hi-sene, which is actually being used in island area, instead of diesel was also studied. As a result, under 60% natural gas with diesel condition, BSFC was increased by 32% without modifying system. There was almost no change for natural gas/Hi-sene condition compared with natural gas/diesel condition. Decrease of burned fuel fraction was the main reason of these phenomena. After optimizing system, BSFC was improved by 2%.

Development of Ventilator without Power using Air Flow (공기흐름을 이용한 무동력 환풍장치 개발)

  • Kim, Bum-Suk;Kwon, Taek-Joo;Jeong, Ji-Hyun
    • Journal of Power System Engineering
    • /
    • v.20 no.2
    • /
    • pp.26-31
    • /
    • 2016
  • The studies on the efficient ventilator to reduce fire and save energy have been proceeded actively. The purpose of this paper is to design a ventilator used in residential wood stove. The ventilator consists of rotation and support part, and it is operated by natural wind without power. The shape of rotation part of the ventilator is like airfoil to reinforce pressure drop. We designed direction controller for the rotation part to track the direction of wind continuously. The rotation and support part have point-contact each other to minimize a friction. We verify the properties of the proposed ventilator though simulation and experiment. The results show the proposed ventilator can exhaust safely combustion gas of the stove more than other ventilator.

LOSS OF OFFSITE POWER TEST EXPERIENCE FOR YGN 4

  • Chi, Sung-Goo;Sung, Kang-Sik;Kim, Se-Chang;Kim, Eul-Ki;Eom, Young-Meen;Park, Young-Boo
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1995.10a
    • /
    • pp.230-234
    • /
    • 1995
  • The loss of offsite power test was successfully performed on YGN 4 to demonstrate that the reactor can be shutdown and the RCS can be maintained in a hot standby condition following a loss of all offsite Alternating Current (AC) power. Following the loss of main generator and all offsite AC power, the ensile emergency diesel generators were automatically started and the plant was stabilized via natural circulation. Plant conditions were maintained in hot standby for at least 30 minutes before offsite power was restored. Thus, the capability of equipment, controls and instrumentation necessary to remove decay heat from the core using only ensile emergency power was demonstrated, thereby satisfying all objectives and acceptance criteria of the test.

  • PDF

Design and Exergy Analysis for a Combined Cycle of Liquid/Solid $CO_2$ Production and Gas Turbine using LNG Cold/Hot Energy

  • Lee, Geun-Sik
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.15 no.1
    • /
    • pp.34-45
    • /
    • 2007
  • In order to reduce the compression power and to use the overall energy contained in LNG effectively, a combined cycle is devised and simulated. The combined cycle is composed of two cycles; one is an open cycle of liquid/solid carbon dioxide production cycle utilizing LNG cold energy in $CO_2$ condenser and the other is a closed cycle gas turbine which supplies power to the $CO_2$ cycle, utilizes LNG cold energy for lowering the compressor inlet temperature, and uses the heating value of LNG at the burner. The power consumed for the $CO_2$ cycle is investigated in terms of a solid $CO_2$ production ratio. The present study shows that much reduction in both $CO_2$ compression power (only 35% of the power used in conventional dry ice production cycle) and $CO_2$ condenser pressure could be achieved by utilizing LNG cold energy and that high cycle efficiency (55.3% at maximum power condition) in the gas turbine could be accomplished with the adoption of compressor inlet cooling and regenerator. Exergy analysis shows that irreversibility in the combined cycle increases linearly as a solid $CO_2$ production ratio increases and most of the irreversibility occurs in the condenser and the heat exchanger for compressor inlet cooling. Hence, incoming LNG cold energy to the above components should be used more effectively.

Distributed Energy System Connection Limit Capacity Increase Technology Using System Flexible Resources (계통유연자원을 활용한 분산에너지 계통접속 한계용량 증대 기술)

  • Jeong Min Park
    • Journal of Integrative Natural Science
    • /
    • v.16 no.4
    • /
    • pp.139-145
    • /
    • 2023
  • Due to changes in the distribution system and increased demand for renewable energy, interest in technology to increase the limit capacity of distributed energy grid connection using grid flexible resources is also increasing. Recently, the distribution system system is changing due to the increase in distributed power from renewable energy, and as a result, problems with the limited capacity of the distribution system, such as waiting for renewable energy to connect and increased overload, are occurring. According to the power generation facility status report provided by the Korea Power Exchange, of the total power generation capacity of 134,020 MW as of 2021, power generation capacity through new and renewable energy facilities is 24,855 MW, accounting for approximately 19%, and among them, power generation through solar power accounts for a total portion of the total. It was analyzed that the proportion of solar power generation facilities was high, accounting for 75%. In the future, the proportion of new and renewable energy power generation facilities is expected to increase, and accordingly, an efficient operation plan for the distribution system is needed. Advanced country-type NWAs that can integrate the operation and management of load characteristics for each line of the distribution system, power distribution, regional characteristics, and economic feasibility of distributed power in order to improve distribution network use efficiency without expanding distribution facilities due to the expansion of renewable energy. An integrated operating system is needed. In this study, in order to improve the efficiency of distribution network use without expanding distribution facilities due to the expansion of renewable energy, we developed a method that can integrate the operation and management of load characteristics for each line of the distribution system, power distribution, regional characteristics, and economic feasibility of distributed power. We want to develop an integrated operation system for NWAs similar to that of advanced countries.

Development of Optimal Operation Algorithm about CES Power Plant (CES 발전소의 최적운용 알고리즘 개발)

  • Kim, Yong-Ha;Park, Hwa-Yong;Kim, Eui-Gyeong;Woo, Sung-Min;Lee, Won-Ku
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.2
    • /
    • pp.61-70
    • /
    • 2012
  • Recently due to the increasing of the importance on the green energy is getting higher by implementing EERS(Energy Efficiency Resource Standards) and NA(Negotiated Agreement) such as lacks of natural resources and The United Nations Framework Convention on Climate Change. And the most practical solution is CHP(Combined Heat and Power) which performs the best energy efficiency. This paper developed optimal operation mechanism of CES(Community Energy System) for enhancement of energy efficiency using CHP(Combined Heat and Power), PLB(Peak Load Boiler) and ACC(ACCumulator) capacities. This method optimally operated these capacities calculated the maximum profits by Dynamic Programing. Through the case studies, it is verified that the proposed algorithm of can evaluate availability.