• Title/Summary/Keyword: Natural power energy

Search Result 591, Processing Time 0.024 seconds

A Study on the Design of the Free-Piston Stirling Engine/Alternator (자유 피스톤 스털링엔진/발전기의 설계 인자 연구)

  • Park, Seongje;Hong, Yongju;Ko, Junseok;Kim, Hyobong;Yeom, Hankil;In, Sehwan;Kang, Insu;Lee, Cheongsu
    • Journal of Hydrogen and New Energy
    • /
    • v.25 no.6
    • /
    • pp.648-655
    • /
    • 2014
  • This paper describes the continuing effort to develope a single acting free-piston Stirling engine/alternator combination for use of the household cogeneration. Free piston Stirling engines(FPSE) use variations of working gas pressure to drive mechanically unconstrained reciprocating elements. Stirling cycle free-piston engines are driven by the Stirling thermodynamic cycle which is characterized by an externally heated device containing working gas that is continuously re-used in a regenerative, reversible cycle. The ideal cycle is described by two isothermal process connected by two constant volume processes. Heat removed during the constant volume cooling process is internally transferred to the constant volume heating process by mutual use of a thermal storage medium called the regenerator. Since the ideal cycle is reversible, the ideal efficiency is that of Carnot. Free-piston Stirling engine is have no crank and rotating parts to generate lateral forces and require lubrication. The FPSE is typically comprised of two oscillating pistons contained in a common cylinder. The temperature difference across the displacer maintains the oscillations, and the FPSE operate at natural frequency of the mass-spring system. The power is generated from a linear alternator. The purpose of this paper is to describe the design process of the single acting free-piston Stirling engine/alternator. Electrical output of the single acting free-piston Stirling engine/alternator is about 0.95 kW.

Development of Solar Warehouse for Drying and Storing the Agricultural Products (농산물(農産物) 건조(乾燥) 및 저장(貯藏)을 위(爲)한 태양열(太陽熱) 저장고(貯藏庫)의 개발(開發)에 관(關)한 연구(硏究))

  • Kim, Man Soo;Chang, Kyu Seob;Kim, Soung Rai;Jeon, Byeong Seon
    • Korean Journal of Agricultural Science
    • /
    • v.9 no.1
    • /
    • pp.357-370
    • /
    • 1982
  • Recent concern regarding price and availability of fossil fuels has spurred the interest in alternative sources for farm crop drying. Among the available options such as biomass energy, wind power, nuclear energy and solar energy etc., the increasing attention is being directed to the utilization of heat from solar energy especially for farm crop drying. Even though solar energy is dispersed over a large land area and only a relatively small amount of energy can be simply collected, the advantages of solar energy is that the energy is free, non-polluting. The study reported here was designed to help supply the informations for the development of simple and relatively inexpensive solar warehouse for farm crop drying and storage. Specifically, the objectives of this study were to determine the performance of the solar collector fabricated, to compare solar supplemented heat drying with natural air drying and to develop a simulation model of temperature in stored grain, which can be used to study the effects due to changes in ambient air temperature. For those above objectives, solar collector was fabricated from available materials. Corrugated steel galvanized sheet, painted flat black, was used as absorbers and clear 0.2mm polyethylene sheet was the cover material. The warehouse for rough rice drying and storage was constructed with concrete block, and the solar collector was used as the roof of warehouse instead of original roofing system of it. The results obtained in this study were as follows: 1. The thermal efficiency of the solar collector was average 26 percent and the overall heat transfer coefficient of the collector was approximately $25kJ/hr.m^2\;^{\circ}K$. 2. Solar heated air was sufficient to dry one cubic meter of rough rice from 23.5 to 15.0 percent in 7 days and natural air was able to dry the same amount of rough rice from 20.0 to 5 percent in l2 days. 3. Drying with solar heat reduced the required drying time to dry the same amount of rough rice into a half compared to natural air drying, but overdrying problems of the bottom layer were so severe that these problems should be thoroughly analyzed. 4. Simulation model of temperature in stored grain was developed and the results of predicted temperature agreed well with test results. 5. Based on those simulated temperature, changes in the grain-temperature were a large at the points of the wallside and the damage of the grain would be severe at the contact area of wall.

  • PDF

Operation Method of Power Supply System for Eco-friendly Movable-weir Based on Natural Energy Sources (자연에너지를 이용한 친환경 가동보용 전원공급시스템의 운용방안)

  • Kwon, Pil-June;Lee, Hu-Dong;Tae, Dong-Hyun;Park, Ji-Hyun;Ferreira, Marito;Rho, Dae-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.2
    • /
    • pp.601-610
    • /
    • 2020
  • Recently, damage caused by drought is becoming worse and worse due to the global climate change. To overcome these problems, movable-weir to control the water level has been installed instead of a fixed-weir made from concrete. On the other hand, it is difficult to operate an existing moveable-weir because of the high cost of facility management and manpower consumption. In addition, because most moveable-weirs are installed in power systems, the operating cost and the cost of connection for power systems increase when they are located in remote areas. Therefore, this paper proposes an optimal design algorithm and the evaluation algorithm of the SOC (state of charge) of a lithium-ion battery to replace an existing power supply with eco-friendly movable-power with a power supply system using PV modules and lithium-ion batteries. In addition, this study modeled a 50kW power supply system of a movable-weir using PSCAD/EMTDC S/W. The simulation results confirmed that the proposed algorithm has stable operation characteristics in an independent operation mode and interconnection operation mode and that there is the possibility of commercialization with a benefits evaluation of the eco-friendly power supply system of a movable-weir.

Antioxidant activity and neuroprotective effects of ethanol extracts from the core of Diospyros kaki (감 심지 에탄올 추출물의 항산화 활성 및 신경세포 보호 효과)

  • Byun, Eui-Baek;Kim, Min-Jin;Kim, Soon-Jung;Oh, Nam-Soon;Park, Sang-Hyun;Kim, Woo Sik;Song, Ha-Yeon;Han, JeongMoo;Kim, Kwangwook;Byun, Eui-Hong
    • Korean Journal of Food Science and Technology
    • /
    • v.52 no.1
    • /
    • pp.60-66
    • /
    • 2020
  • This study examined the antioxidant activity and neuroprotective effects of ethanol extracts obtained from Diospyros kaki core (DCE). The total polyphenol and flavonoid contents in DCE was 786.47±15.27 and 31.14±0.82 mg/g, respectively. In addition, DCE exhibited a dose-dependent induction of radical scavenging activity, determined by 1,1-diphenyl-picrylhydrazyl (DPPH), 2,2'-azino-bis-(3-ethylbenzothiazoline-6-sulfonicacid) (ABTS), ferric reducing antioxidant power (FRAP), and reducing power assays. The viability of HT22 hippocampal cells was examined to investigate the neuroprotective effect of DCE. DCE treatment did not induce cytotoxicity at concentrations below 1,000 ㎍/mL. Additionally, DCE treatment in the background of H2O2 induce oxidative stress revealed a significant increase in the survival rat, indicated by increased SOD activity and decreased levels of MDA, a lipid peroxidation product. Therefore, the results suggest that DCE can be used as a source of natural antioxidants source and a therapeutic agent for the treatment of brain disorders induced by oxidative stress and neuronal damage.

A Study on Optimization of Perovskite Solar Cell Light Absorption Layer Thin Film Based on Machine Learning (머신러닝 기반 페로브스카이트 태양전지 광흡수층 박막 최적화를 위한 연구)

  • Ha, Jae-jun;Lee, Jun-hyuk;Oh, Ju-young;Lee, Dong-geun
    • The Journal of the Korea Contents Association
    • /
    • v.22 no.7
    • /
    • pp.55-62
    • /
    • 2022
  • The perovskite solar cell is an active part of research in renewable energy fields such as solar energy, wind, hydroelectric power, marine energy, bioenergy, and hydrogen energy to replace fossil fuels such as oil, coal, and natural gas, which will gradually disappear as power demand increases due to the increase in use of the Internet of Things and Virtual environments due to the 4th industrial revolution. The perovskite solar cell is a solar cell device using an organic-inorganic hybrid material having a perovskite structure, and has advantages of replacing existing silicon solar cells with high efficiency, low cost solutions, and low temperature processes. In order to optimize the light absorption layer thin film predicted by the existing empirical method, reliability must be verified through device characteristics evaluation. However, since it costs a lot to evaluate the characteristics of the light-absorbing layer thin film device, the number of tests is limited. In order to solve this problem, the development and applicability of a clear and valid model using machine learning or artificial intelligence model as an auxiliary means for optimizing the light absorption layer thin film are considered infinite. In this study, to estimate the light absorption layer thin-film optimization of perovskite solar cells, the regression models of the support vector machine's linear kernel, R.B.F kernel, polynomial kernel, and sigmoid kernel were compared to verify the accuracy difference for each kernel function.

Experimental Evaluation of Developed Ultra-low NOx Coal Burner Using Gas in a Bench-scale Single Burner Furnace (Bench-scale 연소로에서 가스 혼소를 통한 초 저 NOx 석탄 버너 개발 연구)

  • Chae, Taeyoung;Lee, Jaewook;Lee, Youngjae;Yang, Won
    • Clean Technology
    • /
    • v.28 no.2
    • /
    • pp.117-122
    • /
    • 2022
  • This study developed and tested an ultra-low NOx burner in an 80 kW combustion furnace. The experiment was conducted in an 80 kW single burner combustion furnace with changing the swirl numbers, total equivalence ratios, and primary/secondary oxidizer ratios. In this study, liquefied natural gas (LNG) was used as an auxiliary fuel to significantly reduce NOx production. In a thermal power plant, the amount of NOx generated during coal combustion is about 300 ppm. However, using the burner tested in this study, it was possible to reduce the amount of NOx generated via LNG co-firing to 40 ppm. If the input amount of the primary oxidizer is enough for the gas to be completely combusted and the gas and coal are added simultaneously, the combusted gas forms a high-temperature region at the burner outlet and volatilizes the coal. As a result, the N contained in the devolatilized coal is discharged. Therefore, when the coal is subsequently burned, the amount of NOx produced decreases because there is almost no N remaining in the coal. If a thermal power plant burner is developed based on the results of this study, it is expected that the NOx generation will be significantly lower in the early stage of combustion.

Field Application and Performance Measurements of Precast Concrete Blocks Developed for Paving Roadways Capable of Solar Power Generation (태양광 도로용 프리캐스트 콘크리트 블록 포장의 현장 적용과 계측)

  • Kim, Bong-Kyun;Lee, Byung-Jae;Kim, Yun-Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.5
    • /
    • pp.69-76
    • /
    • 2020
  • Global warming is a very important problem as it causes rapid climate change and natural disasters. Therefore, researches related to renewable energy are being actively conducted while promoting policies such as reducing carbon dioxide emission and increasing the proportion of renewable energy. Solar power generation is being applied in urban areas like BIPV as well as existing idle areas outside the city. Therefore, in this study, precast concrete blocks developed for paving roadways capable of solar power generation were designed and constructed. For the evaluation of field applicability for 6 months, skid resistance and block settlement were measured. As a result of the experiment, it was found that skid resistance satisfies the standard of general roadway in Korea, but not the standard of highway. The skid resistance tended to decrease as time passed. In addition, the settlement of the block gradually increased slightly, but it is much smaller than the allowable settlement of the roadway. Therefore, it is necessary to establish a maintenance period and method based on the periodic measurement results in the future.

Seismic Response of Seismically-Isolated Nuclear Power Plants considering Age-related Degradation of High Damping Rubber Bearing (고감쇠고무 적층받침의 경년열화를 고려한 원전구조물의 지진응답)

  • Park, Junhee;Choun, Young-Sun;Choi, In-Kil
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.26 no.2
    • /
    • pp.131-138
    • /
    • 2013
  • The high damping rubber bearings contributed to reduce a seismic force transmitted to upper structures, the material properties of rubber changes with time and the rubber with age-related degradation can affect the seismic response of structures and equipments. Therefore the seismic response of structure considering age-related degradation of isolators should be evaluated. In this paper, the stiffness and damping for isolators were defined using the aging data proposed by other researchers. The reactor containment building and the auxiliary building were selected to conduct the nonlinear analysis and the natural frequency, maximum responses, floor response spectrum(FRS) were evaluated with time using the four earthquakes with different frequency contents. According to the analysis results, the seismic responses are increased by the age-related degradation of isolators and the detail inspections should be conducted up to 20 years because it was presented that the change of FRS was high during this period.

Suitability Analysis of Onshore Wind Farm using GIS Program and Digital maps (GIS 및 수치지도를 활용한 육상풍력발전단지 적지분석)

  • Park, Jae-Hyeong;Lee, Hwa-Woon;Kim, Dong-Hyuk;Kim, Hyun-Goo;Kim, Tae-Wook
    • Journal of Environmental Science International
    • /
    • v.23 no.11
    • /
    • pp.1919-1927
    • /
    • 2014
  • In order to decide the location of appropriate onshore wind farm with higher potential wind energy, several decision processes using Geographic Information System (GIS) including Digital Elevation Map (DEM) were proposed and we also estimated the wind resources through the proposed decision process. Decision process consists with three steps. First step is excluding inappropriate location geographically using DEM data including SRTM (Shuttle Radar Topography Mission) terrain data, landslide, land-use, roadway, and forest road data. And the second step of decision process is consideration of the difficulty caused by the natural environmental problem. This step is carried out using ECVAM (Environmental Conservation Value Assessment Map) data. And final step is determination of the most suitable location through the Moving Suitability Identification Method (MSIM) based on the moving potentially estimated wind resources area. Proposed decision process was applied over the Korean Peninsula. Wind resource potential estimated by the first and the second step is cases shows 35.09 GW and 7.17 GW, respectively, and the total evaluated energy from the all proposed step were 0.43 GW and 1.87 GW for the 3 km and 1.5 km geographical grid size, respectively.

Aerodynamic and Structural Design for Medium Size Horizontal Axis Wind Turbine Rotor Blade with Composite Material (복합재를 이용한 수평축 풍력터빈 회전 날개의 공력 및 구조설계에 관한 연구)

  • 공창덕;방조혁;오동우;김기범;김학봉
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.1 no.2
    • /
    • pp.12-21
    • /
    • 1997
  • Nowadays, non-pollution energy sources have been strongly needed because of the exhaustion of fossil fuels and serious environmental problems. Because wind energy can be enormously obtained from natural atmosphere, this type of energy has lots of advantages in a economic and pollution point of view. This study has established the aerodynamic and structural design procedure of the rotor blade with an appropriate aerodynamic performance and structural strength for the 500㎾ medium class wind turbine system. The aerodynamic configuration of the rotor blade was determined by considering the wind condition in the typical local operation region, and based on this configuration aerodynamic performance analysis was performed. The rotor blade has the shell-spar structure based on glass/epoxy composite material and is composed of shank including metal joint parts and blade. Structural design was done by the developed design program in this study and structural analysis, for instance stress analysis, mode analysis and fatigue life estimation, was performed by the finite element method. As a result, a medium scale wind turbine rotor blade with starting characteristics of 4m/s wind speed, rated power of 500㎾ at 12m/s wind speed and over 20 years fatigue life has been designed.

  • PDF