• Title/Summary/Keyword: Natural power energy

Search Result 591, Processing Time 0.025 seconds

Emission Characteristics of HCNG Engine with Compression Ratio Change (압축비 변화에 따른 HCNG 엔진의 배기 특성)

  • Lee, Sungwon;Lim, Gihun;Park, Cheolwoong;Choi, Young;Kim, Changgi
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.4
    • /
    • pp.106-112
    • /
    • 2013
  • Compression ratio is an important factor affecting engine performance and emission characteristics since thermal efficiency of spark ignition engine can be theoretically improved by increasing compression ratio. In order to evaluate the effect of compression ratio change in HCNG engine, natural gas engine was employed using HCNG30 (CNG 70 vol%, hydrogen 30 vol%). Combustion and emission characteristics of CNG and HCNG fuel was analyzed with respect to the change of compression ratio at each operating condition. The results showed that thermal efficiency improved and $CH_4$, $CO_2$ emission decreased with the increase in compression ratio while $NO_x$ emissions were decreased at a certain excess air ratio condition. Higher thermal efficiency and further reduction of exhaust emissions can be achieved by the increase of compression ratio and the retard of spark timing.

Performance Analysis and Emission Characteristics of a Bi-fuel Using Spark Ignition Engine

  • Mahmud, Md. Iqbal;Cho, Haeng-Muk
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.3
    • /
    • pp.351-359
    • /
    • 2010
  • Bi-fuel system in a spark ignition engine (SIE) is a rising phenomena in today's automobile technology. In a gasoline driven vehicle, alternatively adoption of compressed natural gas (CNG) could be used as a potential substitute to meet the energy requirement and this is possible by some minor changes in the hardware of the existing engine. Gasoline engine is widely used in the passenger cars, light, medium and heavy duty vehicles but the consumption status of the petroleum is decreasing worldwide and at the same time environmental pollution from automobiles is seriously establishes as a threat for every nation in respect to global warming and climate changes. Now-a-days most vehicles operate using CNG for its popularity stems, clean burning properties and cost effective solution compared to other alternative fuels. It refers as a good gaseous fuel because of its high octane number and self ignition temperature. Though the power output is slightly lesser than the gasoline fuel; its thermal efficiency is better than the gasoline for the same SIE. The research paper highlights the reduction of CO, reasonable outcomes of HC emissions with minor increase in $NO_x$ emissions compared with the gasoline fuel to bi-fuel mode in the SIE that meets the emission challenges.

Dynamic characteristics of curved inhomogeneous nonlocal porous beams in thermal environment

  • Ebrahimi, Farzad;Daman, Mohsen
    • Structural Engineering and Mechanics
    • /
    • v.64 no.1
    • /
    • pp.121-133
    • /
    • 2017
  • This paper proposes an analytical solution method for free vibration of curved functionally graded (FG) nonlocal beam supposed to different thermal loadings, by considering porosity distribution via nonlocal elasticity theory for the first time. Material properties of curved FG beam are assumed to be temperature-dependent. Thermo-mechanical properties of porous FG curved beam are supposed to vary through the thickness direction of beam and are assumed to be temperature-dependent. Since variation of pores along the thickness direction influences the mechanical and physical properties, porosity play a key role in the mechanical response of curved FG structures. The rule of power-law is modified to consider influence of porosity according to even distribution. The governing equations of curved FG porous nanobeam under temperature field are derived via the energy method based on Timoshenko beam theory. An analytical Navier solution procedure is used to achieve the natural frequencies of porous FG curved nanobeam supposed to thermal loadings with simply supported boundary condition. The results for simpler states are confirmed with known data in the literature. The effects of various parameters such as nonlocality, porosity volume fractions, type of temperature rising, gradient index, opening angle and aspect ratio of curved FG porous nanobeam on the natural frequency are successfully discussed. It is concluded that these parameters play key roles on the dynamic behavior of porous FG curved nanobeam. Presented numerical results can serve as benchmarks for future analyses of curve FG nanobeam with porosity phases.

Seismic Capacity Test of Nuclear Piping System using Multi-platform Shake Table (다지점 진동대를 이용한 원자력발전소 배관계통의 내진성능실험)

  • Cheung, Jin-Hwan;Gae, Man-Soo;Seo, Young-Deuk;Choi, Hyoung-Suk;Kim, Min-Kyu
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.17 no.1
    • /
    • pp.21-31
    • /
    • 2013
  • In this study, dynamic characteristics and seismic capacity of the nuclear power plant piping system are evaluated by model test results using multi-platform shake table. The model is 21.2 m long and consists of straight pipes, elbows, and reducers. The stainless steel pipe diameters are 60.3 mm (2 in.) and 88.9 mm (3 in.) and the system was assembled in accordance with ASME code criteria. The dynamic characteristics such as natural frequency, damping and acceleration responses of the piping system were estimated using the measured acceleration, displacement and strain data. The natural frequencies of the specimen were not changed significantly before and after the testing and the failure and leakage of the piping system was not observed until the final excitation. The damping ratio was estimated in the range of 3.13 ~ 4.98 % and it is found that the allowable stress(345 MPa) according to ASME criteria is 2.5 times larger than the measured maximum stress (138 MPa) of the piping system even under the maximum excitation level of this test.

Performance Analysis of Thermosphon Using Phase Change Material (상변화 물질을 이용한 열사이폰의 성능 분석)

  • Paek, Yee;Cho, Ki-Hyon;Lee, Joo-Seong
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.3 no.3
    • /
    • pp.219-228
    • /
    • 2000
  • In order to evaluate the applicability of thermosyphon as an equipment of heat transfer to the case where natural of low temperature and low density is necessary and to propose the possibility of using natural energy being clean and inexhaustible, a thermosypon using methanol as working fluid was constructed and its transfer characteristics were analysed. The wall temperature of the thermosyphon was maintained relatively uniform after rapid increase until after being heated about ten minutes regardless of the level of input powers to the evaporating section. Inner pressure of the thermosyphon increased rapidly until after ten minutes, and then increased slowly depending on the level of input power. But heat transfer coefficient of the condensible section decreased in inverse proportion to input powers of 250~300W, showing $1008.3{\sim}829.8W/m^2{\cdot}^{\circ}C$. For the input powers of the thermosyphon within the range of 100~250W, heat transferred and heat flux increased relatively linearly showing, in the case of input powers of 250~300W, heat transfer efficiency considerable increased, showing 63.8%.

  • PDF

Optimization of an extra vessel electromagnetic pump for Lead-Bismuth eutectic coolant circulation in a non-refueling full-life small reactor

  • Kang, Tae Uk;Kwak, Jae Sik;Kim, Hee Reyoung
    • Nuclear Engineering and Technology
    • /
    • v.54 no.10
    • /
    • pp.3919-3927
    • /
    • 2022
  • This study presents an optimal design of the coolant system of a non-refueling full-life small reactor by analyzing the space-integrated geometrical and electromagnetic variables of an extra vessel electromagnetic pump (EVEMP) for the circulation of a lead-bismuth eutectic (LBE) coolant. The EVEMP is an ideal alternative to the thermal-hydraulic system of non-refueling full-life micro reactors as it possesses no internal structures, such as impellors or sealing structures, for the transportation of LBE. Typically, the LBE passes through the annular flow channel of a reactor, is cooled by the heat exchanger, and then circulates back to the EVEMP flow channel. This thermal-hydraulic flow method is similar to natural circulation, which enhances thermal efficiency, while providing a golden time for cooling cores in the event of an emergency. When the forced circulation technology of the EVEMP was applied, the non-refueling full-life micro reactor achieve an output power of 60 MWt, which is higher than that achievable via the natural circulation method (30 MWt). Accordingly, an optimized EVEMP for Micro URANUS with a flow rate of 4196 kg/s and developed pressure of 73 kPa under a working temperature of 250 ℃ was designed.

A Study of Energy Security Cooperation and its Integration Potential in South America through Brazilian Leadership (남미지역 에너지안보 협력과 통합 가능성 연구 : 브라질의 리더십 역할 고찰)

  • Ha, Sang-Sub
    • Journal of International Area Studies (JIAS)
    • /
    • v.15 no.1
    • /
    • pp.83-108
    • /
    • 2011
  • South America has vast energy resources with the renewable and non-renewable sources. However, many countries in the region are unable to guarantee adequate energy security both of energy supply and demand. Currently the possibility of energy security is high through regional energy integration based on the potential economic benefits. The difference of regulation system with the individual countries in the region impose strong barriers to integration process. Security of energy supply and its demand as well is fundamental issues in this region and regional energy cooperation is essential for getting rid of the insecurity of energy supplies. Despite of this problem, currently Latin American countries made a great effort to make multilateral energy security regime through projecting great energy infrastructure network(e.g. IIRSA) or mechanism especially in South America, which can give countries access to the region's reserve supplies by providing regulations and pricing mechanism with a shared energy market in this region. Brazil's active leading in the formulation of such movement toward energy security integration and participation of energy infrastructure network is good initiative to enforce this great energy security change. Politically and economically, Brazil's geographical position and the level of market size and oil and natural gas resources, in addition the leadership in renewable energy sources make it a sound candidate to take over the coordination of the secure integration of region's energy market. However, on the conditions of existing many obstacles such as, control of the output of the region's power plant, energy flows, the environmental matter within local community must be overcome to make more advance process and steps. Finally, to secure more institutional approach, this region must settle regional disputes resolution regime urgently.

The tuned mass-damper-inerter for harmonic vibrations suppression, attached mass reduction, and energy harvesting

  • Marian, Laurentiu;Giaralis, Agathoklis
    • Smart Structures and Systems
    • /
    • v.19 no.6
    • /
    • pp.665-678
    • /
    • 2017
  • In this paper the tuned mass-damper-inerter (TMDI) is considered for passive vibration control and energy harvesting in harmonically excited structures. The TMDI couples the classical tuned mass-damper (TMD) with a grounded inerter: a two-terminal linear device resisting the relative acceleration of its terminals by a constant of proportionality termed inertance. In this manner, the TMD is endowed with additional inertia, beyond the one offered by the attached mass, without any substantial increase to the overall weight. Closed-form analytical expressions for optimal TMDI parameters, stiffness and damping, given attached mass and inertance are derived by application of Den Hartog's tuning approach to suppress the response amplitude of force and base-acceleration excited single-degree-of-freedom structures. It is analytically shown that the TMDI is more effective from a same mass/weight TMD to suppress vibrations close to the natural frequency of the uncontrolled structure, while it is more robust to detuning effects. Moreover, it is shown that the mass amplification effect of the inerter achieves significant weight reduction for a target/predefined level of vibration suppression in a performance-based oriented design approach compared to the classical TMD. Lastly, the potential of using the TMDI for energy harvesting is explored by substituting the dissipative damper with an electromagnetic motor and assuming that the inertance can vary through the use of a flywheel-based inerter device. It is analytically shown that by reducing the inertance, treated as a mass/inertia-related design parameter not considered in conventional TMD-based energy harvesters, the available power for electric generation increases for fixed attached mass/weight, electromechanical damping, and stiffness properties.

Analysis of Levelized Cost of Hydrogen and Financial Performance Risk by CCU System (CCU 시스템을 통한 균등화 수소원가 및 재무적 위험도 분석)

  • MINHEE SON;HEUNGKOO LEE;KYUNG NAM KIM
    • Journal of Hydrogen and New Energy
    • /
    • v.33 no.6
    • /
    • pp.660-673
    • /
    • 2022
  • In achieving carbon neutrality and the hydrogen economy, the estimation of H2 cost is critical in terms of CCU technologies. This study analyzes LCOH of hydrogen produced by the carbon utilization unit with methane reforming and CO2 from thermal power plant. LCOH for H2 made with CO is estimated in three ways of Joint Cost Allocations with financial performance risk assessment. Regarding cost analysis, the zero value of LCOH is $6,003/ton. We found that the CCU technology has economic feasibility in terms of profitability. The sensitivity analysis result shows that the input ratio is more influential to the LCOH than other variables. Risk analysis presents the baseline price of zero value of LCOH - $8,408/ton, which is higher than the cost analysis - $6,003/ton. Mainly, the price variability of natural gas primarily affects the LCOH. The study has significant value in analyzing the financial performance risks as well as the cost of H2 produced by a Plasma-based CCU system.

Regenerating Condition Optimization of NGCC Combined Carbon Capture Process Simultaneously Considering Absorption and Regeneration Rates (흡수율과 재생율을 동시 고려한 천연가스복합발전 공정 연계 이산화탄소 포집 공정의 재생 조건 최적화)

  • Jeong Hun Choi;Young-Hwan Chu
    • Korean Chemical Engineering Research
    • /
    • v.61 no.3
    • /
    • pp.368-377
    • /
    • 2023
  • Natural Gas Combined Cycle(NGCC) recently receives lots of attention as an attractive form of power plants by virtue of its low carbon emission compared with coal-fired power plant. Nevertheless, it also needs carbon capture process since it is difficult to completely suppress carbon emission even for the NGCC. A simulation study has been performed to optimize operating condition of a carbon capture process using MEA considering low partial pressure of carbon dioxide in NGCC emission gas. For accurate optimization, overall process model including both NGCC and the carbon capture process has been built with a simulation software. Then, optimization in which various performance indices such as carbon dioxide absorption rate, solvent regeneration rate and power loss in the NGCC are simultaneously reflected has been done. Especially, it is noticeable that this study focuses on not only the amount of energy consumption but also the absorption and regeneration performance of carbon capture process. The best result considering all the performance indices has been achieved when the reboiler temperature is 120 ℃ and the reason has been analyzed.