• Title/Summary/Keyword: Natural power energy

Search Result 591, Processing Time 0.023 seconds

Detection of Anormalies on the Power Line using the Instantaneous Frequencies (순간주파수를 이용한 전력선 신호의 이상현상검출)

  • Iem, Byeong-Gwan
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.55 no.12
    • /
    • pp.544-548
    • /
    • 2006
  • The instantaneous frequency gives a frequency value at a time instance. Thus, it is natural to use the instantaneous frequency for detecting disturbances of voltage signal in power line. Various instantaneous frequency estimators are introduced. By applying to different types of disturbed signals, we show the estimators' ability to classify flickers. Also, the computational costs are compared between different instantaneous frequency estimators. The Prony's method (PRONY) and the modified covariance method (MCOV) need relatively smaller amount of calculation than the Teaser-Kaiser energy operator based estimator (DESA II). For an AM-FM modulated signal, the tracking performance of different instantaneous frequency estimators is also compared. Through simulation, it is shown that MCOV produces less variant frequency estimation values than DESA II and PRONY method.

Heat Transfer in a Duct with Various Cross Section of Ribs (초소형 열병합발전시스템(${\mu}CHP$) 운전거동 시뮬레이션 프로그램 개발)

  • Cho, Woo-Jin;Lee, Kwan-Soo;Kim, In-Kyu
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.172-176
    • /
    • 2009
  • We developed a program, "CogenSim-$\mu$," to simulate the operation of micro-combined heat and power (${\mu}CHP$) system. The CogenSim-$\mu$ can reflect the variation of energy efficiency by handling the real-time loads (heat and power) fluctuation. The result obtained using this program was compared with the real operation of 30 kWe gas engine driven ${\mu}CHP$. It was found that the CogenSim-$\mu$ could predict the amount of generated-power, recovered-heat and consumed-fuel with the error less than 3%, and heat and power efficiency with the error less than 4%. The CogenSim-$\mu$ reconstructed the profile of on-off cycle, which represented the operation of a facility, with more than 93% accuracy. The CogenSim-$\mu$ can reflect the effects of various factors such as size of thermal storage tank, desired temperature of reservoir water, natural frequency of generator, etc. As a result, the CogenSim-$\mu$ can be used to optimize the ${\mu}CHP$ operation.

  • PDF

Performance Analysis of WHR-ORC Using Hydrocarbon Mixtures for 20kW Gross Power at Low Temperature

  • Kwakye-Boateng, Patricia;Yoon, Jung-In;Son, Chang-Hyo;Hui, Kueh Lee;Kim, Hyeon-Uk
    • Journal of Power System Engineering
    • /
    • v.18 no.6
    • /
    • pp.140-145
    • /
    • 2014
  • Exploitation of renewable energies is on the increase to mitigate the reliance on fossil fuels and other natural gases with rocketing prices currently due to the depletion of their reserves not to mention their diverse consequences on the environment. Divergently, there are lots of industries "throwing" heat at higher temperatures as by products into the environment. This waste heat can be recovered through organic Rankine systems and converted to electrical energy with a waste heat recovery organic Rankine cycle system (WHR-ORC). This study uses the annual average condenser effluent from Namhae power plant as heat source and surface seawater as cooling source to analyze a waste heat recovery organic Rankine cycle using the Aspen HYSYS simulation software package. Hydrocarbon mixtures are employed as working fluid and varied in a ratio of 9:1. Results indicate that Pentane/Isobutane (90/10) mixture is the favorable working fluid for optimizing the waste heat recovery organic Rankine cycle at the set simulation conditions.

Evaluation of MCC seismic response according to the frequency contents through the shake table test

  • Chang, Sung-Jin;Jeong, Young-Soo;Eem, Seung-Hyun;Choi, In-Kil;Park, Dong-Uk
    • Nuclear Engineering and Technology
    • /
    • v.53 no.4
    • /
    • pp.1345-1356
    • /
    • 2021
  • Damage to nuclear power plants causes human casualties and environmental disasters. There are electrical facilities that control safety-related devices in nuclear power plants, and seismic performance is required for them. The 2016 Gyeongju earthquake had many high-frequency components. Therefore, there is a high possibility that an earthquake involving many high frequency components will occur in South Korea. As such, it is necessary to examine the safety of nuclear power plants against an earthquake with many high-frequency components. In this study, the shaking table test of electrical facilities was conducted against the design earthquake for nuclear power plants with a large low-frequency components and an earthquake with a large high-frequency components. The response characteristics of the earthquake with a large high-frequency components were identified by deriving the amplification factors of the response through the shaking table test. In addition, safety of electrical facility against the two aforementioned types of earthquakes with different seismic characteristics was confirmed through limit-state seismic tests. The electrical facility that was performed to the shaking table test in this study was a motor control center (MCC).

Study of Welding Toughness Characteristics on the Root-pass Welding Process of High Tensile Steel at Tower Production for Offshore Wind Power Generation (해상풍력 발전용 타워 제작시 고장력강재의 초층용접에 관한 용접특성 연구)

  • Jung, Sung-Myoung;Kim, Ill-Soo;Kim, Ji-Sun;Na, Hyun-Ho;Lee, Ji-Hye
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.2
    • /
    • pp.349-353
    • /
    • 2012
  • As the world wind energy market grows rapidly, the productions of wind power generation equipment have recently increased, but manufacturers are not able meet this requirement. Particularly offshore wind energy industry is one of the most popular renewable energy sectors. To generalize welding processes, the welding automation is considered for steel structure manufacturing in offshore wind energy to get high quality and productivity. Welding technology in construction of the wind towers is depended on progress productivity. In addition, the life of wind tower structures should be considered by taking account of the natural weathering and the load it endures. The root passes are typically deposited using Gas Tungsten Arc Welding(GTAW) with a specialized backing gas shield. Not only the validation consists of welders experienced in determining the welding productivity of the baseline welding procedure, but also the standard testing required by the ASME section IX and API1104 codes, toughness testing was performed on the completed field welds. This paper presents the welding characteristics of the root-pass welding of high tensile steel in manufacturing of offshore wind tower. Based on the result from welding experiments, optimal welding conditions were selected after analyzing correlation between welding parameters(peak current, background current and wire feed rate) and back-bead geometry such as back-bead width(mm) and back-bead height performing root-pass welding experiment under various conditions. Furthermore, a response surface approach has been applied to provide an algorithm to predict an optimal welding quality.

Health Risk Assessment due to 137Cs Released into Ocean from the Severe Accident of the Fukushima Dai-ichi Nuclear Power Plants (후쿠시마 사고로 해양으로 누출된 137Cs에 의한 인체 위해도 평가)

  • Min, Byung Il;Lee, Baek Gun;Suh, Kyung Suk;Park, Kihyun
    • Journal of Radiation Industry
    • /
    • v.8 no.2
    • /
    • pp.123-132
    • /
    • 2014
  • After the nuclear accident of the Fukushima Dai-ichi Nuclear Power Plants (FDNPPs) on 11 March 2011, a large amount of radioactive materials has been released into the atmosphere and the ocean. A compartment model is used to evaluate the circulation characteristics and the spatiotemporal concentration distributions of radionuclides in the ocean. In the comparison with observed concentrations of $^{137}Cs$ in seawater, calculated concentrations by the compartment model were well agreed with them. On the basis of these results, we performed evaluation of the effective dose and the cancer risk. In the early stage of the accident, the effective doses from ingestion of the seafood near the Fukushima region were much higher than 1 mSv which is the value of the annual effective dose limit to individual recommended by the International Commission on Radiological Protection (ICRP). However, the effective doses by ingestion of the seafood decreased below 1 mSv as distance from the FDNPPs increased and time passed. In addition, it was estimated that the cancer risks by intake of the contaminated marine products were less than natural occurrence probability of cancer. Consequently, it was inferred that the health risk due to the $^{137}Cs$ was low after since mid-term period of the accident.

Shaking table test and numerical analysis of nuclear piping under low- and high-frequency earthquake motions

  • Kwag, Shinyoung;Eem, Seunghyun;Kwak, Jinsung;Lee, Hwanho;Oh, Jinho;Koo, Gyeong-Hoi;Chang, Sungjin;Jeon, Bubgyu
    • Nuclear Engineering and Technology
    • /
    • v.54 no.9
    • /
    • pp.3361-3379
    • /
    • 2022
  • A nuclear power plant (NPP) piping is designed against low-frequency earthquakes. However, earthquakes that can occur at NPP sites in the eastern part of the United States, northern Europe, and Korea are high-frequency earthquakes. Therefore, this study conducts bi-directional shaking table tests on actual-scale NPP piping and studies the response characteristics of low- and high-frequency earthquake motions. Such response characteristics are analyzed by comparing several responses that occur in the piping. Also, based on the test results, a piping numerical analysis model is developed and validated. The piping seismic performance under high-frequency earthquakes is derived. Consequently, the high-frequency excitation caused a large amplification in the measured peak acceleration responses compared to the low-frequency excitation. Conversely, concerning relative displacements, strains, and normal stresses, low-frequency excitation responses were larger than high-frequency excitation responses. Main peak relative displacements and peak normal stresses were 60%-69% and 24%-49% smaller in the high-frequency earthquake response than the low-frequency earthquake response. This phenomenon was noticeable when the earthquake motion intensity was large. The piping numerical model simulated the main natural frequencies and relative displacement responses well. Finally, for the stress limit state, the seismic performance for high-frequency earthquakes was about 2.7 times greater than for low-frequency earthquakes.

Portfolio Analysis on the New Power Generation Sources of the Sixth Basic Plan for Long Term Electricity Demand and Supply (포트폴리오 이론을 활용한 제6차 전력수급기본계획의 신규전원구성 비교 연구)

  • Kim, Juhan;Kim, Jinsoo
    • Environmental and Resource Economics Review
    • /
    • v.23 no.4
    • /
    • pp.583-615
    • /
    • 2014
  • Including the rolling black out in 2011, Korea has suffered from rapid increase of electricity consumption and demand forecasting failure for last five years. In addition, because of the Fukushima disaster, high fuel prices, and introduction of new generation sources such as renewables, the uncertainty on a power supply strategy increases. Consequently, a stable power supply becomes the new agenda and a revisino of strategy for new power generation sources is needed. In the light of this, we appraises the sixth basic plan for long term electricity demand and supply considering the changes of foreign and domestic conditions. We also simulate a strategy for the new power generation sources using a portfolio analysis method. As results, a diversity of power generation sources will increase and the share of renewable power generation will be surged on the assumptions of a cost reduction of renewable power sources and an increase of fuel costs. Particularly, on the range of a risk level(standard deviation) from 0.06 and 0.09, the efficient frontier has the most various power sources. Besides, the existing power plan is not efficient so that an improvement is needed. Lastly, the development of an electricity storage system and energy management system is necessary to make a stable and efficient power supply condition.

A Comparison of Decomposition Analyses for Primary and Final Energy Consumption of Korea (우리나라 1차 에너지와 최종 에너지 소비 변화요인 분해 비교분석)

  • Park, Sungjun;Kim, Jinsoo
    • Environmental and Resource Economics Review
    • /
    • v.23 no.2
    • /
    • pp.305-330
    • /
    • 2014
  • There has been a lot of studies to identify the driving forces of energy consumption. Many of them decomposed the final energy consumption into the intensity effect, structural effect, and production effect. Those approach, however, could not consider the transformation loss during the electric power generation. Therefore, in this study, we conducted a decomposition analysis on the primary energy use basis to reflect that transformation loss. Log mean Divisia index and refined Laspeyres methods were used for the index decomposition. As results, we could find out that the difference between two approaches were definite. The intensity effect in 2011 is -0.607 times against 1981 in the final energy case, but -0.236 times in the primary energy case. The structure effect in 2011 is 0.227 times against 1981 in the final energy case, but 0.434 times in the primary energy case. Therefore, an analysis on the primary energy basis is essential when conducting a decomposition analysis.

Researched and Analyzed Variables for Pollution Waters around the "Kosova B" Thermal Power Plant

  • Musliu, Adem;Musliu, Arber;Baftiu, Naim
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.9
    • /
    • pp.109-116
    • /
    • 2022
  • The energy corporation of Kosovo continuously monitors and analyzes the impact of its own activities on the environment. Regarding the environmental situation, energy corporation of Kosovo- ECK regularly informs and reports objectively to the competent state institutions, local municipal institutions and interested parties. ECK, through numerous contacts with the competent authorities, firstly with different ministers, harmonizes the positions regarding environmental issues in the direction of achieving certain environmental standards or legal requirements in order to gradually be in accordance with them, based on the real possibilities, especially the financial ones. From this point of view, the environmental issue is very sensitive, quite complex and represents one of the biggest challenges of society currently and in the future. The researched variables show a continuous increase in the need for electricity production in Kosovo and this increase in production conditions a wide range of environmental impacts both at the local, regional and global levels. The aim of the work is to reduce the emission of pollutants through the main variables without inhibiting the economic development of the country, i.e. to bring the pollution as a result of the activities of the ECK operation into compliance with the permitted environmental norms. As a result of ECK's operational activities, the following follows: Air pollution mainly as a result of emissions from TCs in the air, transport, etc. Water pollution - as a result of technological water discharges, Land degradation - as a result of surface mining activities of the entire mining area. The purpose of the paper is to research and analyze the main water variables in the area of the Kosova B power plant, which is to determine the degree of their pollution from the activities of the power plants, as well as to assess the real state of surface water quality and control the degree of pollution of these waters. Methodology of the work: The analyzes of the water samples were done in the company Institute "INKOS" JSC by simultaneous methods using different reagents.