• Title/Summary/Keyword: Natural power energy

Search Result 591, Processing Time 0.028 seconds

Prediction of Consumed Electric Power on a MQL Milling Process using a Kriging Meta-Model (크리깅 메타모델을 이용한 MQL 밀링공정의 소비전력 예측 연구)

  • Jang, Duk-Yong;Jung, Jeehyun;Seok, Jongwon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.4
    • /
    • pp.353-358
    • /
    • 2015
  • Energy consumption reduction has become an important key word in manufacturing that can be achieved through the efficient and optimal use of raw materials and natural resources, and minimization of the harmful effects on nature or human society. The successful implementation of this concept can only be possible by considering a product's entire life cycle and even its disposal from the early design stage. To accomplish this idea with milling, minimum quantity lubrication (MQL) strategies and cutting conditions are analyzed through process modeling and experiments. In this study, a model to predict the cutting energy in the milling process is used to find the cutting conditions, which minimize the cutting energy through a Kriging meta-modeling process. The MQL scheme is developed first to reduce the amount of cutting oil and costs used in the cutting process, which is then employed for the entire modeling and experiments.

Seismic Test of the Control Rod Drive Mechanism for JRTR (JRTR 제어봉구동장치의 내진시험)

  • Choi, Myoung-Hwan;Kim, Gyeong-Ho;Sun, Jong-Oh;Cho, Yeong-Garp
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.5
    • /
    • pp.552-558
    • /
    • 2016
  • A control rod drive mechanism(CRDM) is a reactor regulating system, which inserts, withdraws or maintains a control rod within a reactor core to control the reactivity of the core. The CRDM for Jordan Research and Training Reactor with 5MW power has been designed and fabricated based on the HANARO’s experience through KAERI and DAEWOO consortium. This paper describes the seismic test results to demonstrate the operability, the drop performance and the structural integrity of CRDM during or after seismic excitations. The seismic tests are carried out under 5 OBE and 1 SSE loads at three Test Rigs simulating the reactor structure and the pool top. From the tests, the CRDM is smoothly driven without a malfunction of stepping motor under OBE load. The pure drop time under OBE and SSE loads is measured as 1.169s and 1.855s to meet the design requirement. Also, it is found that the CRDM maintains the structural integrity without a change of the function and natural frequency before and after seismic loads.

Turbulence Driven by Supernova Explosions in a Radiatively-Cooling Magnetized Interstellar Medium

  • KIM JONGSOO;BALSARA DINSHAW;MAC LOW MORDECAI-MARK
    • Journal of The Korean Astronomical Society
    • /
    • v.34 no.4
    • /
    • pp.333-335
    • /
    • 2001
  • We study the properties of supernova (SN) driven interstellar turbulence with a numerical magnetohydrodynamic (MHD) model. Calculations were done using the RIEMANN framework for MHD, which is highly suited for astrophysical flows because it tracks shocks using a Riemann solver and ensures pressure positivity and a divergence-free magnetic field. We start our simulations with a uniform density threaded by a uniform magnetic field. A simplified radiative cooling curve and a constant heating rate are also included. In this radiatively-cooling magnetized medium, we explode SNe one at a time at randomly chosen positions with SN explosion rates equal to and 12 times higher than the Galactic value. The evolution of the system is basically determined by the input energy of SN explosions and the output energy of radiative cooling. We follow the simulations to the point where the total energy of the system, as well as thermal, kinetic, and magnetic energy individually, has reached a quasi-stationary value. From the numerical experiments, we find that: i) both thermal and dynamical processes are important in determining the phases of the interstellar medium, and ii) the power index n of the $B-p^n$ relation is consistent with observed values.

  • PDF

CMP: A Context Information-based Routing Scheme with Energy-based Message Prioritization for Delay Tolerant Networks

  • Cabacas, Regin;Ra, In-Ho
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.14 no.4
    • /
    • pp.295-304
    • /
    • 2014
  • Communication infrastructure supports wide variety of mobile services such as photo and file sharing, location tracking, social network services and instant messaging. However, instances like power-loss and natural disasters disrupt these communication infrastructures unable to render support to these mobile services. Delay-tolerant networks (DTNs) offer a solution to these problems at hand. By utilizing mobility and opportunistic contacts among mobile devices, a plausible communication network can be establish and enable support to mobile applications. This paper presents an energy-efficient, reliable message delivery routing scheme with message prioritization rules for DTN. It uses the context information of nodes (mobile devices) such as the contact history (location and time of contact), speed/velocity, moving direction to determine the best forwarders among nodes in the network. The remaining energy of the nodes is also used to determine the message types a node can deliver successfully. The simulation results show that proposed approach outperforms Epidemic and Prophet routing schemes in terms of delivery ratio, overhead ratio, delivered messages per types and remaining energy.

Axial frequency analysis of axially functionally graded Love-Bishop nanorods using surface elasticity theory

  • Nazemnezhad, Reza;Shokrollahi, Hassan
    • Steel and Composite Structures
    • /
    • v.42 no.5
    • /
    • pp.699-710
    • /
    • 2022
  • This work presents a comprehensive study on the surface energy effect on the axial frequency analyses of AFGM nanorods in cylindrical coordinates. The AFGM nanorods are considered to be thin, relatively thick, and thick. In thin nanorods, effects of the inertia of lateral motions and the shear stiffness are ignored; in relatively thick nanorods, only the first one is considered; and in thick nanorods, both of them are considered in the kinetic energy and the strain energy of the nanorod, respectively. The surface elasticity theory which includes three surface parameters called surface density, surface stress, and surface Lame constants, is implemented to consider the size effect. The power-law form is considered for variation of the material properties through the axial direction. Hamilton's principle is used to derive the governing equations and boundary conditions. Due to considering the surface stress, the governing equation and boundary condition become inhomogeneous. After homogenization of them using an appropriate change of variable, axial natural frequencies are calculated implementing harmonic differential quadrature (HDQ) method. Comprehensive results including effects of geometric parameters and various material properties are presented for a wide range of boundary condition types. It is believed that this study is a comprehensive one that can help posterities for design and manufacturing of nano-electro-mechanical systems.

Thermal-hydraulic modeling of CAREM-25 advanced small modular reactor using the porous media approach and COBRA-EN modified code

  • Saeed Zare Ganjaroodi;Maryam Fani;Ehsan Zarifi;Salaheddine Bentridi
    • Nuclear Engineering and Technology
    • /
    • v.56 no.5
    • /
    • pp.1574-1583
    • /
    • 2024
  • Small Modular Reactors (SMRs) are compact nuclear reactors designed to generate electric power up to 300 MWe. They could be assembled in factory, and then transported to be directly installed on-stie. CAREM (Central Argentina de Elementos Modulares) is a national SMR development project, based on light water reactor technology supervised by Argentina's National Atomic Energy Commission (CNEA). It is a natural circulation-based SMR with an indirect-cycle, including specific items and parts that simplify the design and improve safety performance. In this paper, the thermal-hydraulic study of CAREM-25 advanced small modular reactor is conducted by using COBRA-EN modified code and the Porous Media Approach (PMA) for the first time. According to PMA approach, each fuel assembly is modeled and divided into a network of lumped regions. While complex geometries are defined, the thermal-hydraulic parameters such as temperature and density are calculated for coolant and fuel rods. The obtained results show that the temperature in the fuel center may reach a peak around 1280 K in the hottest fuel assembly. Finally, the comparison of results from both methods (modified COBRA-EN and PMA) presented an appropriate consistency.

Scale Down Design on Experiment Facility of the Water/Steam Receiver for Solar Power Tower (타워형 태양열 흡수기의 열전달 특성 실험장치에 관한 연구)

  • Seo, Ho-Young;Kim, Jong-Kyu;Kang, Yong-Heack;Kim, Yong-Chan
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.676-679
    • /
    • 2007
  • This paper describes an experiment facility to measure the circulation characteristics of a water/steam receiver at various heat fluxes. The natural circulation type receiver was considered in this study. The experiment facility was designed to satisfy circulation balance with an appropriate scale down. As a result, riser tube inner diameter was 7.4 mm and water circulation was 0.319 kg/s. Downcomer tube inner diameter by circulation balance was 9.52 mm and the quality was from 0 to 0.23.

  • PDF

Investigation on the Effect of Stress Waves on Soil Flushing (토양세척에 있어서 탄성파의 효과에 관한 연구)

  • 김영욱;김지형;이인모
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2000.05a
    • /
    • pp.37-40
    • /
    • 2000
  • Acoustically enhanced soil flushing method is a newly developed in-situ remediation technique. However, there has not been an analytical method that can be used to evaluate the effectiveness of ultrasonic wave under different conditions. This study was undertaken to investigate the degree of enhancement in contaminant removal due to ultrasonic energy on the soil flushing method. The test conditions included different levels of ultrasonic power and hydraulic gradient. The test soils were Ottawa sand, a fine aggregate, and a natural soil, and the surrogate contaminant was a Crisco Vegetable Oil. The test results showed that sonication could increase contaminant removal significantly. Increasing sonication power increased pollutant removal. The faster the flow is, the smaller the degree of enhancement will be. The pollutants in dense soils are more difficult to be removed than in loose soils.

  • PDF

Proportional Gas Flow Control Valve Using Piezo Actuator (압전액추에이터를 이용한 비례 가스유량제어밸브)

  • Yun S.N.;Kim C.Y.;Ham Y.B.;Lee K.W.;Kang J.H.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.2 no.3
    • /
    • pp.6-11
    • /
    • 2005
  • A household gas valve is used for flow control of LPG(Liquefied Petroleum Gas) or LNG(Liquefied Natural Gas) of which pressure is about $200mmH_2O(\fallingdotseq\;0.0196[bar])$. Currently, two kinds of valves such as rotary type and button type are widely used in many applications. But, these valves have some problems that they are not controllable and reliable. Piezo actuation combined with modem microelectronics provides a reliable, quiet, low energy, infinitely adjustable gas valve. In this paper, gas valve using piezo actuator which are bimorph and a circle type was studied. Also, Prototype for gas valve was manufactured and characteristics of the prototype gas valve were analyzed.

  • PDF

Engineering Practice for ESS Protection by means of One Point Grounding System (일점접지방식을 이용한 전자교환기 방호의 실제)

  • Kim, Soo-Hyung;Seo, Jung-Uck
    • Proceedings of the KIEE Conference
    • /
    • 1988.07a
    • /
    • pp.502-505
    • /
    • 1988
  • This paper is to demonstrate the effectiveness of one point grounding in support of ESS protection. One point grounding provides for the dispatching of excess energy for protection of switching equipment and personnel from lightning discharge hazards and for a natural sink for noise from atmospheric lightning and power transients. In most ESS installations there are a number of different items that must be maintained at a common ground potential for safety, fault protection or noise reduction. The items typically consist of power systems, heating and ventilating systems, distributing frames, repeating equipmets, switching equipments, etc. Grounding system of an ESS Office is most effective when all the ground points are connected to a single, common earth. The one point grounding prvides a common reference potential, keeping all the items of telecommunications facility free from the earth current and voltage hazards.

  • PDF