• Title/Summary/Keyword: Natural mineral water

Search Result 252, Processing Time 0.102 seconds

Recent Water Treatment Technology for Unconventional Natural Resource Development (비전통자원개발에 따른 수처리 최신 기술)

  • Kim, Geug Tae;Chung, Kun Yong;Park, Jung Kyu
    • Korean Chemical Engineering Research
    • /
    • v.52 no.2
    • /
    • pp.154-165
    • /
    • 2014
  • Development of unconventional natural resources such as shale gas, shale oil and coal bed methane, has been activated and improved the productivity due to the recent technology advance in horizontal drilling and hydraulic fracturing. However, the flowback water mixed with chemical additives, and the brine water containing oil, gas, high levels of salts and radioactive metals is produced during the gas production. Potential negative environmental impact due to large volumes of the produced wastewater is increasingly seen as the major obstacles to the unconventional natural resource development. In this study an integrated framework for the flowback and brine water treatment is proposed, and we reviewed the upcoming state of the art technology in water treatment. Basic separation processes which include not only membrane, evaporation, crystallization and desalination processes, but the potential water reuse and recycling techniques can be applied for the unconventional natural resource industry.

Holocene Paleosols of the Upo Wetland, Korea

  • Nahm, Wook-Hyun;Kim, Ju-Yong;Yang, Dong-Yoon;Hong, Sei-Sun;Lee, Jin-Young;Kim, Jin-Kwan
    • The Korean Journal of Quaternary Research
    • /
    • v.17 no.2
    • /
    • pp.167-168
    • /
    • 2003
  • The Upo wetland, the largest natural wetland in Korea, is located in Changnyeong-gun, Gyeongsannam Province ($35^{\circ}33'$ N, $128^{\circ}25'$ E), and 70 km upstream from the Nakdong River estuary. Unlike most other Korean wetlands that have been destroyed under the name of economic development, the Upo wetland has been able to preserve its precious ecosystem throughout the years. Thanks to increased public awareness about natural wetlands and environmental conservation, the Korean Ministry of Environment designated the Upo wetland an 'Ecological Conservation Area' on July 26th, 1997. On March 2nd of the following year, the Upo wetland (8.54 $\textrm{km}^2$) was designated a 'Protected Wetland' in accordance with the international Ramsar Treaty. A 4.49m long (from 9.73 to 5.24 m in altitude) UP-1 core ($35^{\circ}33'05"N$, $128^{\circ}25'17"E$), recovered in the marginal part of the Upo wetland, is divided into eight buried paleosol units of different ages on the basis of the abundance of color mottles and vertical color variations (Aslan et al., 1998). Radiocarbon datings suggested that the paleosol profile represent the last 5700 years. The entire section of the core was more or less subjected to pedogenetic processes, and shows very weak to moderate soil profile development. These Holocene paleosols are therefore regarded as synsedimentary soils of deluvium (deposits formed by floods) origin (Sycheva et al., 2003). Unit 1 to 5 paleosols are generally silt-rich and exhibit moderate profile development. The boundaries between the units are somewhat distinguishable, but not so clear cut. This is due to variable repeated combination of accumulation, denudation and soil forming processes within various periods. Mottle textures gradually decrease in abundance with increasing clay content in Unit 6, which results in weak profile development. The lower boundary of Unit 6 lies around about 2000 yrBP, the beginning of Subatlantic in Korea (Kim et al., 2001). Abrupt sediment textural change is detected in Unit 7, which is interpreted to indicate the human activities on the Upo wetland. Unit 8 represents the recent soil forming processes. The preliminary results of this ongoing study imply the primary factor for pedogenetic processes is the water table fluctuations related to the sedimentary textures like grain size distributions, and the geomorphological stability of the Upo wetland.o wetland.

  • PDF

자연환경 변화와 광물의 역할

  • 김수진
    • Proceedings of the Petrological Society of Korea Conference
    • /
    • 2000.05a
    • /
    • pp.3-11
    • /
    • 2000
  • The earth environment consists of four spheres : geosphere, hydrosphere, atmosphere and biosphere. The geosphere consists mostly of minerals. It, however, contains some water and air in its shallow depth. Although hydrosphere and atmosphere consist predominantly of water and air, respectively, both contain some minerals. The biosphere consisting of various organisms is present in the interfaces of geosphere, hydrosphere and atmosphere. The natural environment of the earth is continuously changing by the interaction of four spheres. It suggests that out relevant environmental problems can not be revolved without understanding the natural relationship of these four spheres. Minerals in our environment are very important because they are the main constituent materials of the earth and they control our environment. The roles of minerals in our environment have not been understood even in the scientific society. Thus their roles have been neglected. Review of studies on the environmental mineralogy so far made at our laboratory and others show that minerals control the environment in various ways. Minerals neutralize the acid water as well as acid rain. Minerals in soils and rocks are major neutralizer of the acid rain. Salinization of sea water is attributed to the ionic substitution between minerals and sea water. Some minerals control the humidity of the air. Corals, the products of biomineralization, are the main carbon controller of the air. Minerals also adsorb heavy metals, organic pollutants and radioactive nuclides. Such remarkable functions for controlling the environment come from the mineral-water reaction and biomineralization. All these phenomena are subjects of the environmental mineralogy, a new field of earth science.

  • PDF

Introduction to a New Sample Preparation Apparatus (H/Device) for Measurement of Hydrogen Isotope Composition of Natural Water (신(新) H/Device를 이용한 자연수의 수소동위원소비 측정)

  • Park, Seong-Sook;Yun, Seong-Taek;So, Chil-Sup
    • Economic and Environmental Geology
    • /
    • v.31 no.3
    • /
    • pp.265-271
    • /
    • 1998
  • In the hydrologic and hydrochemical studies of natural waters, oxygen and hydrogen isotope compositions of waters are very important to elucidate the origin and circulation pattern of water in the hydrologic system. The hydrogen isotope analysis of waters usually has been undertaken through the reduction of water to form hydrogen gas using pure metals (in general, zinc and uranium). In 1996, a new apparatus (H/Device) was developed to prepare the water samples (by the reduction with Cr metal) without some intrinsic problems that may yield incorrect and/or inaccurate data, and was installed at 1997 in the Center for Mineral Resources Research (CMR) in Korea University. However, the optimistic conditions of preparation and analysis of samples has not been established. In this paper, we introduce the efficiency of H/Device to obtain accurate hydrogen isotope values of water, and discuss both the optimum conditions including the effective reduction time and the probable mixing (memory) effect between successive samples. We obtained large amounts of a laboratory working standard (KUW; Korea University Water) with the average ${\delta}D_{SMOW}$ value of $-42.1{\pm}1.0$$(1{\sigma})$.

  • PDF

Flocculation properties of a natural polyampholyte: The optimum condition toward clay suspensions

  • Nazarzadeh, Mohammad;Nikfarjam, Nasser;Qazvini, Nader Taheri
    • Environmental Engineering Research
    • /
    • v.22 no.3
    • /
    • pp.255-265
    • /
    • 2017
  • Polyelectrolytes are commonly used as flocculants in drinking water treatment. However the growing concerns about their toxicity have motivated the search for biocompatible flocculants. Here, we show that gelatin, a natural amphoteric polyelectrolyte, can be effectively adsorbed on clay surfaces and can potentially be a suitable substitute for existing flocculants. The adsorption of gelatin from its aqueous solution onto the mineral clay surfaces at different conditions was systematically investigated using the design of experiments methodology. The gelatin adsorption was found to vary considerately with pH variation showed a maximum adsorption at its isoelectric point. The amount of adsorbed gelation increased with increasing pH from 3 to 5, attained a maximum at pH 5 and then decreased with increasing pH from 5 to 11. Similarly, the amount of adsorbed gelatin showed decreasing trends around salt concentration of 0.05 M and temperature $35^{\circ}C$. On the other hand, the adsorption was continuously increased with time and polymer concentration in the range of 0.1-0.9 mg/dL. Finally, the jar tests confirmed the ability of gelatin for using a natural flocculant for water treatment.

Phosphorus removal by lime-natural mineral dissolved solutions

  • Joohyun, Kim;Sunho, Yoon;Jueun, Jung;Sungjun, Bae
    • Membrane and Water Treatment
    • /
    • v.14 no.1
    • /
    • pp.27-33
    • /
    • 2023
  • In previous studies, solely ferric (Fe3+) and calcium (Ca2+) ions were commonly used for removal of PO4-P (considered as T-P in this study) in wastewater via chemical precipitation. Herein, the removal of total phosphorus (T-P) in wastewater was performed using various mineral and lime dissolved solutions. The dissolution kinetics of different minerals (feldspar, olivine, elvan, illite, sericite, and zeolite) and lime was compared and used their solutions for T-P removal of real wastewater. The highest T-P removal (almost 90%) was obtained by the lime dissolved solution and followed by zeolite, illite, feldspar, and others. We observed a significant co-relationship (R of 0.96) between the amount of initial Ca2+ and T-P removal. This was induced by formation of hydroxyapatite-like mineral via Ca-P precipitation reaction at high pH solution. Furthermore, additional removal of suspended solid (SS) and chemical oxygen demand (COD) was achieved by only lime dissolved solution. Finally, the lime-feldspar dissolved solutions were prepared at different ratios (10-50%), which showed a successive T-P removal up to two times by samples of 40 and 50%.

Effective Use of Micro Fines (미분의 효과적인 이용에 관한 연구)

  • 백신원
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.73-78
    • /
    • 2001
  • Portland cement concrete is made with coarse aggregate, fine aggregate, portland cement, water and, in some cases, selected chemical admixtures such as air-entraining agents, water reducer, superplasticizer, and so on, and mineral admixtures such as fly ash, silica fume, slags, etc. Typically, in the concrete, the coarse aggregate and fine aggregate will occupy approximately 80 percent of the total volume of the final mix. Therefore, the coarse and fine aggregates affect to the properties of the portland cement concrete. As the natural sands are drained, it is necessary and economical to utilize crushed sands(manufactured fine aggregate). It is reported that crushed sands differ from natural sands in gradation, particle shape and texture, and the micro fines in the crushed sands affect to the quality of the portland cement concrete. Therefore, the purpose of this paper is to investigate the characteristics of fresh and hardened concrete with high content of micro fines. This study provides firm data for the use of crushed sands with higher micro fines.

  • PDF

Inhibitory Activity of Brine Mineral Water on Cancer Cell Growth, Metastasis and Angiogenesis (해양성 광천수의 암세포 성장, 전이 및 신생 혈관 생성 억제 효과)

  • Kim, Wan-Jae;Li, Hua;Yoon, Taek-Joon;Sim, Jae-Man;Choi, Seon-Kang;Lee, Kwang-Ho
    • The Korean Journal of Food And Nutrition
    • /
    • v.22 no.4
    • /
    • pp.542-547
    • /
    • 2009
  • Brine mineral water(BMW) has recently gained attention as a new water resource due to its biological activities. In this study, BMW from the Geumjin area(Gangneung-city, Korea) was evaluated for its growth inhibition, anti-metastasis and anti-angiogenesis activity against cancer cells. The in vitro cytotoxicity was measured by CCK assay, and the anti-metastasis activity was estimated by lung metastasis in vivo. The in vitro incubation of mouse splenic cells with BMW that had been diluted more than 4-fold showed no effect on the cell growth when compared to a control group. Additionally, BMW inhibited the growth of the EL-4, L5178Y-R and colon26-M3.1 cancer cell lines in a dose-dependent manner. In vivo evaluation of the anti-metastasis activity of BMW in BALB/c mice inoculated with the colon26-M3.1 cell line revealed dose-dependent inhibition in response to treatment with samples that were diluted by up to 9 times. Finally, treatment with BMW effectively suppressed the growth of vascular endothelial growth factor(VEGF) added human umbilical vein endothelial cells. Overall, these results suggest that BMW has anti-cancer activity.

Hydrochemical and Isotopic Properties of the Thermal Spring Water from Chonju Jukrim District, Korea (전주 죽림지역 온천수의 화학적 및 동위원소적 특성)

  • Na, Choon-Ki;Lee, Mu-Seong;Lee, In-Sung;Park, Hee-Youl;Kim, Oak-Bae
    • Economic and Environmental Geology
    • /
    • v.30 no.1
    • /
    • pp.25-33
    • /
    • 1997
  • The purpose of this study is to examine the feasibility of using stable isotopes as a hydrologic tracer, and to elucidate the groundwater circulation system and the source of S component dissolved in thermal water of the Chonju Jukrim thermal spring district based on the O, H and S isotopic variabilities of environmental materials including bedrock, rainwater, surface water, shallow subsurface water and thermal spring water. The ${\delta}^{18}O$ and ${\delta}D$ of subsurface waters and surface water show highly restricted range and plotted on the same meteoric water line as a ${\delta}D=8{\delta}^{18}O+19$ line, and derivate from the mean annual isotopic composition of the rain water but are analogous to those of rain waters precipitated during winter season, indicating that ground waters are originated from the meteoric water and are strongly affected by the seasonal variation of air mass. Thermal spring waters are more depleted in ${\delta}^{18}O$ and ${\delta}D$ than those of shallow ground water and surface water. It can be explained by the difference of recharge area. The hydrochemical properties of subsurface waters and surface water devide into two groups: $Ca(HCO_3)_2$ type including shallow subsurface water and surface water, and $Na(HCO_3)$ type of thermal spring waters. The ${\delta}^{34}S$ values of thermal spring water show very high positive and quitely distinct from those of shallow subsurface water and surface water that are similar to those of bed rocks, indicating that sulfate dissolved in thermal spring water has not only a terrigenic origin, but also originates partially from the foreign source containing very heavy ${\delta}^{34}S$ component such as an ancient sea water. However, the presence of $H_2S$ can not be ignore the affact of the isotopic fractionation to explaine the heavy ${\delta}^{34}S$ of thermal spring water. Overall, the Oxygen and Hydrogen stable isotopes can identify the source and the circulation system of the natural waters and the S-isotopes can provide a crucial clue on tracing the dissolved material transports in the circulation system of the natural water.

  • PDF

Hydrogeochemical Characterization of Natural Radionuclides Uranium and Radon in Groundwater, Jeonnam Province (전라남도 일대 지하수 중에서 산출하는 자연방사성물질 우라늄과 라돈의 수리지구화학적 거동특징)

  • Cho, Byong Wook;Kim, Moon Su;Kim, Hyun Gu;Hwang, Jae Hong;Cho, Soo Young;Choo, Chang Oh
    • The Journal of Engineering Geology
    • /
    • v.27 no.4
    • /
    • pp.501-511
    • /
    • 2017
  • Natural radionuclides such as uranium and radon from 170 groundwater wells in Jeonnam Province were investigated, together with hydrogeochemical properties, and concentration maps of uranium and radon were also constructed in this study. Characteristics of their concentrations and occurrence were discussed using hydrogeochemical factors and geostatistical methods based on individual geological units. Though uranium and radon in groundwater show a wide range in the concentration, most of which occur as low levels except a few sites. Based on factor analysis, correlation coefficients between uranium and radon are very low. Such results verify that these radionuclides behave independently, well consistent with most previous results investigated nationwide in groundwater. Besides uranium and radon, most hydrochemical components in groundwater show a close relation to indicate the water-rock interaction taken place actively in aquifer.