• 제목/요약/키워드: Natural interaction

검색결과 1,335건 처리시간 0.027초

Interaction between a Blood Vessel- Inducing Protein Angiogenin and Its Binding Protein Actin

  • So, Seung-Ho;Ahn, Byung-Cheol;Paik, Seung-Bum;Chang, Soo-Ik
    • 한국생물물리학회:학술대회논문집
    • /
    • 한국생물물리학회 1996년도 정기총회 및 학술발표회
    • /
    • pp.43-43
    • /
    • 1996
  • Bovine angiogenin (bAng) is a potent blood vessel inducing protein purified from cow milk. Fluorescence spectroscopy has been used to study the interaction of bAng with actin in 50 mM Tris-HCl, pH 7.5, and 1 mM CaCl$_2$ at 25$^{\circ}C$. Actin contains four tryptophans but bAng contains no tryptophans. A 50% decrease in intrinsic fluorescence accompanied formation of the bAng/actin complex. (omitted)

  • PDF

Study of Effect of Adsorbate-Adsorbent Interaction in Multilylayer Physical Adsorption of Gases on Solids

  • Park, Sung-Ju;Lee, Jo W.;Pak, Hyung-Suk;Chang, Sei-Hun
    • Bulletin of the Korean Chemical Society
    • /
    • 제2권2호
    • /
    • pp.56-59
    • /
    • 1981
  • In this paper a further generalization of the theory of multilayer physical adsorption previously developed by the authors is attempted so that the effect of vertical interactions between adsorbent and adsorbate can be explicitly taken into account. In this attempt we have to discard the previously adopted assumption that the molecules in the second layer or above are all in the same physical state. In order to estimate the effect of vertical interactions on the adsorption isotherm the interaction energy between an adsorbed molecule and the adsorbent surface is assumd to vary as $r^{-3}$ where r is the distance that the molecule under consideration is separated from the adsorbent surface. Resulting adsorption isotherm is applied to interpret the adsorption data of tetramethylsilane vapor on iron film and good agreements between observed and calculated values are obtained over wide range of pressure.

지반-기초-구조물 상호작용을 고려한 말뚝 기초 구조물에서의 지진 하중 평가 (Evaluation of Seismic Loading of Pile Foundation Structure Considering Soil-foundation-structure Interaction)

  • 유민택;하정곤;조성배;김동수
    • 한국지진공학회논문집
    • /
    • 제18권3호
    • /
    • pp.125-132
    • /
    • 2014
  • In this study, a series of dynamic centrifuge tests were performed for a soil-foundation-structural interaction system in dry sand with various embedded depths and superstructure conditions. Sinusoidal wave, sweep wave and real earthquake were used as input motion with various input acceleration and frequencies. Based on the results, a natural period and an earthquake load for soil-structure interaction system were evaluated by comparing the free-field and foundation accelerations. The natural period of free field is longer than that of the soil-foundation-structure system. In addition, it is confirmed that the earthquake load for soil-foundation-structure system is smaller than that of free-field in short period region. In contrast, the earthquake load for soil-foundation-structure interaction system is larger than that of free-field in long period region. Therefore, the current seismic design method, applying seismic loading of free-field to foundation, could overly underestimate seismic load and cause unsafe design for long period structures, such as high-rise buildings.

Structural damping for soil-structure interaction studies

  • Lutes, Loren D.;Sarkani, Shahram
    • Structural Engineering and Mechanics
    • /
    • 제3권2호
    • /
    • pp.107-120
    • /
    • 1995
  • A soil-structure interaction formulation is used here which is based on consideration of the dynamics of the structure with a free, rather than a fixed, base. This approach is shown to give a quite simple procedure for coupling the dynamic characteristics of the structure to those of the foundation and soil in order to obtain a matrix formulation for the complete system. In fixed-base studies it is common to presume that each natural mode of the structure has a given fraction of critical damping, and since the interaction formulation uses a free-base model, it seems natural for this situation to assign the equal modal damping values to free-base modes. It is shown, though, that this gives a structural model which is significantly different than the one having equal modal damping in the fixed-base modes. In particular, it is found that the damping matrix resulting in equal modal damping values for free-based modes will give a very significantly smaller damping value for the fundamental distortional mode of the fixed-base structure. Ignoring this fact could lead one to attribute dynamic effects to interaction which are actually due to the choice of damping.

Interaction between a Blood Vessel-Inducing Protein Angiogenin and Its Binding Protein Actin

  • Chang, Soo-Ik;Paik, Seung-Bum;So, Seung-Ho;Ahn, Byung-Cheol
    • BMB Reports
    • /
    • 제29권4호
    • /
    • pp.353-358
    • /
    • 1996
  • Bovine angiogenin (bAng) is a potent blood vessel inducing protein purified from cow In ilk. fluorescence spectroscopy has been used to study the interaction of bAng with actin in 50 mM Tris-HCl pH 7.5, and 1 mM $CaCl_2$ at $25^{\circ}C$. Actin contains four tryptophans but bAng contains no tryptophans. A 50% decrease in intrinsic fluorescence accompanied formation of the bAng/actin complex. By contrast, the interaction of RNase A, a homologous protein to bAng, with actin results in about 10% quenching of the fluorescence. Fluorescence titration experiments were performed by adding increasing concentrations of bAng (0~1.0 ${\mu}M$) to a constant concentration of actin (0.1 ${\mu}M$), and the dissociation constant $K_d$ for the bAng/actin complex and the stoichiometry n were measured as $20{\pm}1$ nM and $1.0{\pm}0.1$ respectively. These results suggest that the interaction between bAng with actin is specific and that quenching of actin fluorescence has occurred in the bAng/actin complex. The bAng binding sites of actin are discussed in the results of this study, and we propose that Trp-80 in the small domain of bovine actin is responsible for the bAng/actin binding.

  • PDF

교량-차량 동적상호작용을 고려한 시간가변적 시스템 특성 분석 (Identification of System Frequency Variations in Vehicle-Bridge Interaction Systems)

  • 이재훈;이영재;김은주
    • 한국전산구조공학회논문집
    • /
    • 제35권1호
    • /
    • pp.23-28
    • /
    • 2022
  • 본 연구에서는 차량-교량 상호작용 시스템의 고유진동수 변화를 분석하였다. 차량이 주행하는 교량의 동특성은 차량의 질량 및 진동을 무시하지 않는 경우 상호작용을 반영해야 하는데, 이때 시스템은 시간가변적이므로 고유진동수 또한 시간가변적인 특성을 보인다. 따라서 본 연구에서는 차량과 교량을 각각 2자유도를 갖는 시스템으로 모델링하여 차량의 위치와 질량비 그리고 시스템 강성비에 따른 시간가변적 고유진동수를 산출하였다. 분석 결과 일반적으로 초기 고유진동수가 작은 시스템은 상호작용으로 인하여 증폭비가 낮아지는 추세를 보이나 상호작용이 발생할 경우 증폭비는 분기점을 보이며 비선형적 추세를 보이는것을 알 수 있다. 따라서 상호작용이 발생하는 시스템차수에 대한 이해가 필요함을 알 수 있다.

Elucidating Molecular Interactions of Natural Inhibitors with HPV-16 E6 Oncoprotein through Docking Analysis

  • Kumar, Satish;Jena, Lingaraja;Galande, Sneha;Daf, Sangeeta;Mohod, Kanchan;Varma, Ashok K.
    • Genomics & Informatics
    • /
    • 제12권2호
    • /
    • pp.64-70
    • /
    • 2014
  • Human papillomavirus (HPV) infection is the leading cause of cancer mortality among women worldwide. The life-threatening infection caused by HPV demands the need for designing anticancerous drugs. In the recent years, different compounds from natural origins, such as carrageenan, curcumin, epigallocatechin gallate, indole-3-carbinol, jaceosidin, and withaferin, have been used as a hopeful source of anticancer therapy. These compounds have been shown to suppress HPV infection by different researchers. In the present study, we explored these natural inhibitors against E6 oncoprotein of high-risk HPV-16, which is known to inactivate the p53 tumor suppressor protein. A robust homology model of HPV-16 E6 was built to anticipate the interaction mechanism of E6 oncoprotein with natural inhibitory molecules using a structure-based drug designing approach. Docking analysis showed the interaction of these natural compounds with the p53-binding site of E6 protein residues 113-122 (CQKPLCPEEK) and helped the restoration of p53 functioning. Docking analysis, besides helping in silico validation of natural compounds, also helps understand molecular mechanisms of protein-ligand interactions.

In Silico Docking to Explicate Interface between Plant-Originated Inhibitors and E6 Oncogenic Protein of Highly Threatening Human Papillomavirus 18

  • Kumar, Satish;Jena, Lingaraja;Sahoo, Maheswata;Kakde, Mrunmayi;Daf, Sangeeta;Varma, Ashok K.
    • Genomics & Informatics
    • /
    • 제13권2호
    • /
    • pp.60-67
    • /
    • 2015
  • The leading cause of cancer mortality globally amongst the women is due to human papillomavirus (HPV) infection. There is need to explore anti-cancerous drugs against this life-threatening infection. Traditionally, different natural compounds such as withaferin A, artemisinin, ursolic acid, ferulic acid, (-)-epigallocatechin-3-gallate, berberin, resveratrol, jaceosidin, curcumin, gingerol, indol-3-carbinol, and silymarin have been used as hopeful source of cancer treatment. These natural inhibitors have been shown to block HPV infection by different researchers. In the present study, we explored these natural compounds against E6 oncoprotein of high risk HPV18, which is known to inactivate tumor suppressor p53 protein. E6, a high throughput protein model of HPV18, was predicted to anticipate the interaction mechanism of E6 oncoprotein with these natural inhibitors using structure-based drug designing approach. Docking analysis showed the interaction of these natural inhibitors with p53 binding site of E6 protein residues 108-117 (CQKPLNPAEK) and help reinstatement of normal p53 functioning. Further, docking analysis besides helping in silico validations of natural compounds also helped elucidating the molecular mechanism of inhibition of HPV oncoproteins.

The effects of foundation size on the seismic performance of buildings considering the soil-foundation-structure interaction

  • Nguyen, Quoc Van;Fatahi, Behzad;Hokmabadi, Aslan S.
    • Structural Engineering and Mechanics
    • /
    • 제58권6호
    • /
    • pp.1045-1075
    • /
    • 2016
  • Shallow footings are one of the most common types of foundations used to support mid-rise buildings in high risk seismic zones. Recent findings have revealed that the dynamic interaction between the soil, foundation, and the superstructure can influence the seismic response of the building during earthquakes. Accordingly, the properties of a foundation can alter the dynamic characteristics (natural frequency and damping) of the soil-foundation-structure system. In this paper the influence that shallow foundations have on the seismic response of a mid-rise moment resisting building is investigated. For this purpose, a fifteen storey moment resisting frame sitting on shallow footings with different sizes was simulated numerically using ABAQUS software. By adopting a direct calculation method, the numerical model can perform a fully nonlinear time history dynamic analysis to realistically simulate the dynamic behaviour of soil, foundation, and structure under seismic excitations. This three-dimensional numerical model accounts for the nonlinear behaviour of the soil medium and structural elements. Infinite boundary conditions were assigned to the numerical model to simulate free field boundaries, and appropriate contact elements capable of modelling sliding and separation between the foundation and soil elements are also considered. The influence of foundation size on the natural frequency of the system and structural response spectrum was also studied. The numerical results for cases of soil-foundation-structure systems with different sized foundations and fixed base conditions (excluding soil-foundation-structure interaction) in terms of lateral deformations, inter-storey drifts, rocking, and shear force distribution of the structure were then compared. Due to natural period lengthening, there was a significant reduction in the base shears when the size of the foundation was reduced. It was concluded that the size of a shallow foundation influences the dynamic characteristics and the seismic response of the building due to interaction between the soil, foundation, and structure, and therefore design engineer should carefully consider these parameters in order to ensure a safe and cost effective seismic design.