• Title/Summary/Keyword: Natural gas

Search Result 2,408, Processing Time 0.027 seconds

Comparative studies for the performance of a natural gas steam reforming in a membrane reactor (분리막 반응기를 이용한 천연가스 개질반응의 성능에 관한 비교 분석)

  • Lee, Boreum;Lim, Hankwon
    • Journal of the Korean Institute of Gas
    • /
    • v.20 no.6
    • /
    • pp.95-101
    • /
    • 2016
  • For a natural gas steam reforming, comparative studies of the performance in a conventional packed-bed reactor and a membrane reactor, a new conceptual reactor consisting of a reactor with series of hydrogen separation membranes, have been performed. Based on experimental kinetics reported by Xu and Froment, a process simulation model was developed with Aspen $HYSYS^{(R)}$, a commercial process simulator, and effects of various operating conditions like temperature, $H_2$ permeance, and Ar sweep gas flow rate on the performance in a membrane reactor were investigated in terms of reactant conversion and $H_2$ yield enhancement showing improved $H_2$ yield and methane conversion in a membrane reactor. In addition, a preliminary cost estimation focusing on natural gas consumption to supply heat required for the system was carried out and feasibility of possible cost savings in a membrane reactor was assessed with a cost saving of 10.94% in a membrane reactor.

A Study on Various Application Technologies Using Coal Bed Methane (Coal Bed Methane을 사용한 다양한 응용 기술에 대한 고찰)

  • CHO, WONJUN;LEE, JESEOL;YU, HYEJIN;LEE, HYUN CHAN;JU, WOO SUNG;LIM, OCKTAEK
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.29 no.1
    • /
    • pp.130-137
    • /
    • 2018
  • Now discusses the potential use and applications of coal bed methane (CBM) in various industries. One of the options for gas monetization is gas to power (GTP), sometimes called gas to wire (GTW). Electric power can be an intermediate product, such as in the case of mineral refining in which electricity is used to refine bauxite into aluminum; or it can be an end product that is distributed into a large utility power grid. For stranded gas, away from the regional markets, the integration of the ammonia and urea plants makes commercial sense. These new applications, if established, could lead to a surge in demand for methanol plants.

Investigation of condensation with non-condensable gas in natural circulation loop for passive safety system

  • Jin-Hwa Yang;Tae-Hwan Ahn;Hwang Bae;Hyun-Sik Park
    • Nuclear Engineering and Technology
    • /
    • v.55 no.3
    • /
    • pp.1125-1139
    • /
    • 2023
  • The system-integrated modular advanced reactor 100 (SMART100), an integral-type pressurized water small modular reactor, is based on a novel design concept for containment cooling and radioactive material reduction; it is known as the containment pressure and radioactivity suppression system (CPRSS). There is a passive cooling system using a condensation with non-condensable gas in the SMART CPRSS. When a design basis accident such as a small break loss of coolant accident (SBLOCA) occurs, the pressurized low containment area (LCA) of the SMART CPRSS leads to steam condensation in an incontainment refuelling water storage tank (IRWST). Additionally, the steam and non-condensable gas mixture passes through the CPRSS heat exchanger (CHX) submerged in the emergency cooldown tank (ECT) that can partially remove the residual heat. When the steam and non-condensable gas mixture passes through the CHX, the non-condensable gas can interrupt the condensation heat transfer in the CHX and it degrades CHX performance. In this study, condensation heat transfer experiments of steam and non-condensable gas mixture in the natural circulation loop were conducted. The pressure, temperature, and effects of the non-condensable gas were investigated according to the constant inlet steam flow rate with non-condensable gas injections in the loop.

Study on the Improvement of Efficiency in Dehydration Process of LNG Liquefaction Plant Using Molecular Sieve (분자체를 이용한 LNG 액화 플랜트 탈수 공정의 효율성 향상에 관한 연구)

  • JONGHWA PARK;DONSANG YU;DAEMYEONG CHO
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.35 no.1
    • /
    • pp.105-113
    • /
    • 2024
  • The natural gas dehydration process plays a central role in liquefying LNG. This study proposes two natural gas dehydration process systems applicable to liquefied natural gas (LNG) liquefaction plants, and compares and analyzes energy optimization measures through simulation. The fuel gas from feed stream (FFF) case, which requires additional equipment for gas circulation, disadvantages are design capacity and increased energy. On the other hand, the end flash gas (EFG) case has advantages such as low initial investment costs and no need for compressors, but has downsides such as increased power energy and the use of gas with different components. According to the process simulation results, the required energy is 33.22 MW for the FFF case and 32.86 MW for the EFG case, confirming 1.1% energy savings per unit time in the EFG case. Therefore, in terms of design pressure, capacity, device configuration, and required energy, the EFG case is relatively advantageous. However, further research is needed on the impact of changes in the composition of regenerated gas on the liquefaction process and the fuel gas system.

Prediction of Explosion Risk for Natural Gas Facilities using Computational Fluid Dynamics (CFD) (전산유체역학시뮬레이션을 이용한 도시가스 설비의 폭발위험성 예측)

  • Han, Sangil;Lee, Dongwook;Hwang, Kyu-Suk
    • Journal of the Korean Applied Science and Technology
    • /
    • v.35 no.3
    • /
    • pp.606-611
    • /
    • 2018
  • City natural gas is classified flammable hazardous gas and should be secured according to explosion risk assessment determined by Industrial Standard KS C IEC. In this study, leak size, ventilation grade and effectiveness were adopted to the KS C IEC for risk assessment in natural gas supply system. To evaluate the applicability of the computational fluid dynamics (CFD), the risk assessment was studied for four different conditions using hypothetical volume($V_z$) valuesfrom gas leak experiments, KS C IEC calculation, and CFD simulation.

Economics of Self-Generation by Natural Gas Industry Using the Mixed Integer Program (혼합정수계획법을 이용한 천연가스(LNG) 산업의 자가발전소 건설에 대한 경제성 분석)

  • Lee, Jeong-Dong;Byun, Sang-Kyu;Kim, Tai-Yoo
    • IE interfaces
    • /
    • v.13 no.4
    • /
    • pp.658-667
    • /
    • 2000
  • Seasonal variation of natural gas demand coupled with rigid and stable import pattern of gas represents the characteristic feature of the Korean Liquified Natural Gas(LNG) industry. This attribute has required a huge amount of investment for the construction of storage facility. Thus, to minimize the supply cost, it is legitimate to reduce storage requirement itself. In this study, we combine three alternative methods to deal with the storage requirement to minimize the supply cost. Those are (1) adding additional storage tanks, (2) inducing large firm customers, and (3) constructing gas-turbine self generation facilities. Methodologically, we employ the mixed integer program (MIP) to optimize the system. The model also consider demand and price-setting scheme in separate modules. From the results, it is shown that if alternatives are combined optimally, a number of storage tanks can be reduced substantially compared with the original capacity plan set by the industry authorities. We perform various sensitivity analyses to check the robustness of the results. The methodology presented in this study can be applied to the other physical network industry, such as hydraulics. The empirical results will shed some light on the rationalization of capacity planning of the Korean natural gas industry.

  • PDF

A Study on the Performance Improvement for a Natural Gas Engine under Lean Burn & WOT Condition (전부하시 희박영역에서의 천연가스엔진 성능향상에 관한 연구)

  • 김창업;김창기;김승수;방효선;한정옥;조양수
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.6
    • /
    • pp.11-17
    • /
    • 1996
  • Many researches on natural gas engines, with lean mixtures are being conducted for the purpose of preservation of global environment. Lean combustion is one of the most promising method for increasing engine efficiency and reducing the emission from SI engines. Due to the possibility of partial burn and misfire, however, under lean burn operation, stable flame kernel formation and fast burn rate, by use of swirl or tumble flow, are needed to guarantee a successful subsequent combustion. Experimental data were obtained on a 4-stroke, natural gas fueled SI engine to investigate the effect of compression ratio, swirl and spark plug electrode rotation on efficiency and emission under lean burn condition. Experimental results have displayed that higher compression ratio, presence of swirl vane and favorable direction of electrode gap brougth about the improvements in engine efficiency and its operational stability.

  • PDF

EFFECT OF DI-TERTIARY-BUTYL PEROXIDE ON IGNITION PERFORMANCE IN A COMPRESSION IGNITION NATURAL GAS ENGINE

  • Li, F.C.;Zheng, Q.P.;Zhang, H.M.
    • International Journal of Automotive Technology
    • /
    • v.8 no.4
    • /
    • pp.413-419
    • /
    • 2007
  • Experimental study of additives on the ignition performance of a compression ignition natural gas engine is introduced, followed by results of a simulation of its working mechanism. From the experimental results, it is understood that engine ignition performance can be improved when a certain amount of Di-tertiary-butyl peroxide additive is added. If the mass fraction of Di-tertiary-butyl peroxide additive reaches as high as 14.2%, engine ignition can be realized at ambient temperatures with a glow plug temperature of about $750^{\circ}C$. From the simulation results, we verify that the Di-tertiary-butyl peroxide additive, by cracking its radicals at lower temperature, can accelerate reaction rate. Therefore, the additive is able to improve the ignition performance of natural gas significantly.

The Effect of Fuel Injection Timing on the Combustion and Emission Characteristics of a Natural Gas Fueled Engine at Part Loads

  • Cho, Haeng-Muk
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.7
    • /
    • pp.1013-1018
    • /
    • 2008
  • For a sequential port fuel injection natural gas engine, its combustion and emission characteristics at low loads are crucial to meet light duty vehicle emission regulations. Fuel injection timing is an important parameter related to the mixture formation in the cylinder. Its effect on the combustion and emission characteristics of a natural gas engine were investigated at 0.2 MPa brake mean effective pressure (BMEP)/2000 rpm and 0.26 MPa BMEP/1500 rpm. The results show that early fuel injection timing is beneficial to the reduction of the coefficient of variation (COV) of indicated mean effective pressure (IMEP) under lean burn conditions and to extending the lean burn limits at the given loads. When relative air/fuel ratio is over 1.3, fuel injection timing has a relatively large effect on engine.out emissions. The levels of NOx emissions are more sensitive to the fuel injection timing at 0.26 MPa BMEP/1500 rpm. An early fuel injection timing under lean burn conditions can be used to control engine out NOx emissions.

Combustion and Emission Characteristics of a Natural Gas Engine under Different Operating Conditions

  • Cho, Haeng-Muk;He, Bang-Quan
    • Environmental Engineering Research
    • /
    • v.14 no.2
    • /
    • pp.95-101
    • /
    • 2009
  • Natural gas is a promising alternative fuel of internal combustion engines. In this paper, the combustion and emission characteristics were investigated on a natural gas engine at two different fuel injection timings during the intake stroke. The results show that fuel injection timing affects combustion processes. The optimum spark timing (MBT) achieving the maximum indicated mean effective pressure (IMEP) is related to fuel injection timing and air fuel ratio. At MBT spark timing, late fuel injection timing delays ignition timing and prolongs combustion duration in most cases. But fuel injection timing has little effect on IMEP at fixed lambdas. The coefficient of variation (COV) of IMEP is dependent on air fuel ratio, throttle positions and fuel injection timings at MBT spark timing. The COV of IMEP increases with lambda in most cases. Late fuel injection timings can reduce the COV of IMEP at part loads. Moreover, engine-out CO and total hydrocarbon (THC) emissions can be reduced at late fuel injection timing.